
0 Z Z

* I
N

0 I

E:LO_

0

,¢
(,/-_

"TI ---t

C

:1 m

0 C

_661. ISFI_DFIV

l,/.J.O_ puel[uel_l '_equeeJO
Jelueo PI§IM eo_ds pJeppo_D

UOlleJlSlU!tuPV eoeds
pus SOllneuomv leUOlleN

_olno 3"IAIS 0

S=qEI'_S AIdO.I.VEIOBV'I ONIEI=I3NION =_=IEIVM.L-IOS

SOFTWARE ENGINEERING LABORATORY SERIES SEL-94-003

C STYLE GUIDE

AUGUST 1994

National Aeronautics and

Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the

National Aeronautics and Space Administration/Goddard Space Flight Center

(NASA/GSFC) and created to investigate the effectiveness of software engineering

technologies when applied to the development of applications software. The SEL

was created in 1976 and has three primary organizational members:

NASA/GSFC, Soft-ware Engineering Branch

University of Maryland, Department of Computer Science

Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the

GSFC environment; (2) to measure the effect of various methodologies, tools, and

models on the process; and (3) to identify and then to apply successful development

practices. The activities, findings, and recommendations of the SEL are recorded in

the Software Engineering Laboratory Series, a continuing series of reports that
includes this document.

The major contributors to this document are

Jerry Doland (CSC)

Jon Valett (GSFC)

Many people in both the Software Engineering Branch at NASA/GSFC and in the

Software Engineering Operation at CSC reviewed this document and contributed their

experiences toward making it a useful tool for Flight Dynamics Division personnel.

Single copies of this document can be obtained by writing to

Software Engineering Branch
Code 552

Goddard Space Flight Center

Greenbelt, Maryland 20771

SEL-94-003 i

ABSTRACT

This document discusses recommended practices and style for programmers using the

C language in the Flight Dynamics Division environment. Guidelines are based on

generally recommended software engineering techniques, industry resources, and local

convention. The Guide offers preferred solutions to common C programming issues

and illustrates through examples of C code.

SEL-94-003 iii

C
Style Guide

1

2

3

INTRODUCTION

1.1 Purpose .. 1

1.2 Audience ... 1

1.3 Approach ... 1

READABILITY AND MAINTAINABILITY 3

2.1 Encapsulation and Information Hiding ... 3

2.2 White Space .. 4

2.2.1 Blank Lines ... 5

2.2.2 Spacing ... 5

2.2.3 Indentation ... 6

2.3 Comments .. 6

2.4 Meaningful Names ... 8

2.4.1 Standard Names .. 9

2.4.2 Variable Names .. 10

2.4.3 Capitalization .. 11

2.4.4 Type and Constant Names ... 11

PROGRAM ORGANIZATION 13

3.1 Program Files ... 13

3.2 README File .. 14

3.3 Standard Libraries .. 14

SEL-94-003 v

Table of Contents

4

5

3.4 Header Files ... 14

3.5 Modules .. 15

3.6 Makefiles .. 15

3.7 Standard Filename Suffixes .. 16

FILE ORGANIZATION 17

4.1 File Prolog ... 18

4.2 Program Algorithm and PDL ... 20

4.2.1 Sequence Statements ... 21

4.2.2 Selection Control Statements .. 21

4.2.3 Iteration Control Statements ... 24

4.2.4 Severe Error and Exception Handling Statements 25

4.3 Include Directive ... 27

4.4 Defines and Typedefs ... 28

4.5 External Data Declarations and Definitions .. 28

4.6 Sequence of Functions ... 28

FUNCTION ORGANIZATION 31

5.1 Function Prologs ... 31

5.2 Function Arguments .. 32

5.3 External Variable Declarations ... 33

5.4 Internal Variable Declarations ... 33

5.5 Statement Paragraphing ... 33

5.6 Return Statement ... 34

DATA TYPES, OPERATORS, AND EXPRESSIONS
37

Variables .. 37

Constants .. 37

6.2.1 Const Modifier .. 38

6.2.2 #define Command .. 38

v i SEL-94-003

Table of Contents

7

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.2.3 Enumeration Types ... 38

6.2.4 Simple Constants .. 39

Variable Definitions and Declarations ... 39

6.3.1 Numbers .. 39

6.3.2 Qualifiers ... 40

6.3.3 Structures .. 40

6.3.4 Automatic Variables ... 40

Type Conversions and Casts .. 41

Pointer Types ... 42

Pointer Conversions .. 42

Operator Formatting ... 42

Assignment Operators and Expressions ... 43

Conditional Expressions .. 45

Precedence and Order &Evaluation .. 45

STATEMENTS AND CONTROL FLOW 47

7.1 Sequence Statements ... 47

7.1.1 Statement Placement ... 47

7.1.2 Braces .. 48

7.2 Selection Control Statements .. 50

7.2.1 If .. 50

7.2.2 If Else .. 50

7.2.3 Else If .. 51

7.2.4 Nested If Statements .. 51

7.2.5 Switch .. 53

7.3 Iteration Control Statements ... 53

7.3.1 While ... 54

7.3.2 For ... 54

7.3.3 Do While ... 55

7.4 Severe Error and Exception Handling .. 55

7.4.1 Gotos and Labels ... 55

7.4.2 Break ... 55

SEL-94-003 vii

Tableof Contents

8

9

PORTABILITY AND PERFORMANCE 57

8.1 Guidelines for Portability .. 57

8.2 Guidelines for Performance ... 58

C CODE EXAMPLES 59

9.1 Makefile .. 60

9.2 C Program File: RF_GetReference.c .. 64

9.3 Include File: HD reference.h .. 79

Figure 1

Figure 2

Figure 3

FIGURES

Information Hiding .. 4

Program Organization .. 13

Standard Filename Suffixes .. 16

Figure 4 File Organization Schema .. 17

Figure 5 Program File Prolog Contents ... 18

Figure 6 Header File Prolog ... 20

Figure 7 Function Organization Schema .. 31

BIBLIOGRAPHY 83

INDEX 85

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

viii SEL-94-003

1
INTRODUCTION

"Good programming style begins with the

effective organization of code. By using a

clear and consistent organization of the

components of your programs, you make
them more efficient, readable, and
maintainable."

- Steve Oualline, C Elements of Style

1.1 Purpose

This document describes the Software Engineering Laboratory (SEL) recommended

style for writing C programs, where code with "good style" is defined as that which is

• Organized

• Easy to read

• Easy to understand

• Maintainable

• Efficient

1.2 Audience

This document was written specifically for programmers in the SEL environment,

although the majority of these standards are generally applicable to all environments.

In the document, we assume that you have a working knowledge of C, and therefore

we don't try to teach you how to program in C. Instead, we focus on pointing out

good practices that will enhance the effectiveness of your C code.

1.3 Approach

This document provides guidelines for organizing the content of C programs, files, and
functions. It discusses the structure and placement of variables, statements, and

SEL-94-003 I

Introduction

comments. The guidelines are intended to help you write code that can be easily read,

understood, and maintained.

• Software engineering principles are discussed and illustrated.

• Key concepts are highlighted.

• Code examples are provided to illustrate good practices.

2 SEI.-94-003

2 READABILITY AND

MAINTAINABILITY

This section summarizes general principles that maximize the

readability and maintainability of C code:

• Organize programs using encapsulation and information

hiding techniques.

• Enhance readability through the use of white space.

• Add comments to help others understand your program.

• Create names that are meaningful and readable.

• Follow ANSI C standards, when available.

2.1 Encapsulation and Information _ding

Encapsulation and information hiding techniques can help you write better organized

and maintainable code. Encapsulation means grouping related elements. You can

encapsulate on many levels:

• Organize a program into files, e.g., using header files to build a cohesive

encapsulation of one idea.

• Organize files into data sections and function sections.

• Organize functions into logically related groups within individual files.

• Organize data into logical groups (data structures).

Information hiding refers to controlling the visibility (or scope) of program

elements. You can use C constructs to control the scope of functions and data. For

example:

• Encapsulate related information in header files, and then include those header

files only where needed. For example, #include <time.h> would be inserted

only in files whose functions manipulate time.

• A variable defined outside the current file is called an external variable. An

external variable is only visible to a function when declared by the extern

declaration, which may be used only as needed in individual functions.

SEL-94-003 3

ReadabilityandMaintainability

Figure 1 illustrates the information hiding concept. The code consists of two files,

three functions, and six variables. A variable name appears to the right of each line

that is within its scope.

File Code Scope

X.C

y.c

#include =local.h"

int a = 2;

static int b = 3;

main()

{
int c = a + b;

xsub(c);

}
xsub(d)

int d;

(
int e = 7 * d;

ysub(e);

}

a

ab

ab

ab

abe

abc

abc

ab

ab

abd

abd

abde

abde
abde

#include =local.h"

ysub(f)
int f;

{
extern int a;

printf("%d_n ", a + f);

a f

a f

a f

Figure 1 Information Hiding

2.2 White Space

Write code that is as easy as possible to read and maintain (taking into consideration

performance tradeoffs for real-time systems when it is appropriate). Adding white

space in the form of blank lines, spaces, and indentation will significantly improve the

readability of your code.

4 SEL-94.-003

Reaclabilityand Maintainability

2.2.1 Blank Lines

A careful use of blank lines between code "paragraphs" can greatly enhance

readability by making the logical structure of a sequence of lines more obvious. Using

blank lines to create paragraphs in your code or comments can make your programs

more understandable. The following example illustrates how the use of blank lines

helps break up lines of text into meaningful chunks.

Example: code paragraphing

#_f_e_ 0

#_f_e _P_ 300

#_f_eSTEP 20

main() /* Fahrenheit-Celsius table */

{
int fahr;

for (fahr = DCI4HR; fahr <= UPPER; fahr = fahr + STEP)

printf("%4d %6.1f\n", fahr, (5.0/9.0)*(fahr - 32)) ;

However, overuse of blank lines can defeat the purpose of grouping and can actually

reduce readability. Therefore, use a single blank line to separate parts of your
program from one another.

2.2.2 Spacing

Appropriate spacing enhances the readability oflexical elements such as variables and

operators. The following examples illustrate how to use individual spaces to improve

readability and to avoid errors. The second example is not only harder to read, but the

spacing introduces an error, where the operator/* will be interpreted by the compiler
as the beginning of a comment. Put one space after a comma to improve readability,

as shown in the third example below.

Example: good spacing

*average = *total / *count;

Example: poor spacing

*average= *total/*count;

^ begin

Example: comma spacing

ccncat (sl, s2)

/* compute the average */

/* cc_pute the ave/age */

comment end comment ^

SEL-94-003 5

Readability and Maintainability

2.2.3 Indentation

Use indentation to show the logical structure of your code. Research has shown that

four spaces is the optimum indent for readability and maintainability. However, in

highly nested code with long variable names, four-space indentation may cause the

lines of code to overrun the end of the line. Use four spaces unless other

circumstances make it unworkable.

Example: four-space indentation

m_n ()
{

_t c;

c = getchar();

while (c.'=IK3F)

{

putchar (c);

c = getchar();

}

2.3 Comments

Judiciously placed comments in the code can provide information that a person could

not discern simply by reading the code. Comments can be added at many different

levels.

• At the program level, you can include a REAl)ME file that provides a general

description of the program and explains its organization.

• At the file level, it is good practice to include a file prolog that explains the

purpose of the file and provides other information (discussed in more detail in

Section 4).

• At the function level, a comment can serve as a function prolog.

• Throughout the file, where data are being declared or defined, it is helpful to

add comments to explain the purpose of the variables.

Comments can be written in several styles depending on their purpose and length.

Use comments to add information for the reader or to highlight sections of code.

Do not paraphrase the code or repeat information contained in the Program Design

Language (PDL).

6 SEI.-94-003

Readability and Maintainability

This section describes the use of comments and provides examples.

• Boxed commentsmUse for prologs or as section separators

• Block commentsmUse at the beginning of each major section of the code as a

narrative description of that portion of the code.

• Short comments_Write on the same line as the code or data definition they
describe.

• Inline comments_Write at the same level of indentation as the code they
describe.

Example: boxed comment prolog

Example: section separator

Example: block comment

/*

*

*/

Write the comment text here, in cc_lolete sentences.

Use block ccnments when there is more than cne

sentence.

Example: short comments

cbuble ieee_r [];

unsigned char ihn_r[] ;

int count;

/* array of IEEE real*8 values

/* string of I_4 real*8 values

/* ntm_er of real*8 values

Tab comment over far enough to separate it from code statements.

If more than one short comment appears in a block of code or data

definition, start all of them at the same tab position and end all at the same

position.

*/
*/
*/

SFL-94-003 7

ReadabllltyandMaintainability

Example: inline comment

switch (ref_type)

(

/* Perform case for either s/c position or velocity

* vector request using the RSL routine c_calpvs */

case I:

case 2:

case n:

}

In general, use short comments to document variable definitions and block comments

to describe computation processes.

Example: block comment vs. short comment

preferred style:

*

* Main sequence:

*/
get and process all user requests

while (,finish ())

(
inquire();
process ();

)

not recommended:

while (!finish()) /* Main sequence: */

(/* */
inquire (); /* Get user request */

process() ; /* And carry it out */

} /* As long as possible */

2.4 Meaningful Names

Choose names for files, functions, constants, or variables that are meaningful and
readable. The following guidelines are recommended for creating element names.

8 SEL-94-O03

ReadabilityandMaintainability

• Choose names with meanings that are precise and use them consistently

throughout the program.

• Follow a uniform scheme when abbreviating names. For example, if you have

a number of functions associated with the "data refresher," you may want to

prefix the functions with "dr_"

• Avoid abbreviations that form letter combinations that may suggest

unintended meanings. For example, the name "inch" is a misleading

abbreviation for "input character." The name "in_char" would be better.

• Use underscores within names to improve readability and clarity:

get_best fit model
load best estimate model

-- M

• Assign names that are unique (with respect to the number of unique characters

permitted on your system).

• Use longer names to improve readability and clarity. However, if names are

too long, the program may be more difficult to understand and it may be
difficult to express the structure of the program using proper indentation.

• Names more than four characters in length should differ by at least two

characters. For example, "systst" and "sysstst" are easily confused. Add

underscores to distinguish between similar names:

systst sys_tst

sysstst sys_s_tst

• Do not rely on letter case to make a name unique. Although C is case-

sensitive (i.e., "LineLength" is different from "linelength" in C), all names

should be unique irrespective of letter case. Do not define two variables with

the same spelling, but different case.

• Do not assign a variable and a typedef (or struct) with the same name, even

though C allows this. This type of redundancy can make the program difficult
to follow.

2.4.1 Standa_ Nmnes

Some standard short names for code elements are listed in the example below. While

use of these names is acceptable if their meaning is clear, we recommend using longer,
more explicit names, such as "buffer_index."

SF:L-94-O03 9

ReadabllltyandMalntalnablllty

Example: standard short names

c characters

i,j,k indices
n counters

p, q pointers

s strings

Example: standard suffixes for variables

_ptr pointer

_file variable of type file*

_fd file descriptor

2.4.2 Vmiable Names

When naming internal variables used by a function, do not duplicate global variable

names. Duplicate names can create hidden variables, which can cause your program

not to function as you intended. In the following example, the internal variable "total"
would override the external variable "total." In the corrected example, the internal

variable has been renamed "grand_total" to avoid the duplication.

Example: hidden variable

int total;

int funcl (void)

{
float total;

)

/* this is a hidden variable */

Example: no hidden variable

int total;

int funcl (void)

{
float grand_total;

}

/* internal variable is unique */

In separate functions, variables that share the same name can be declared. However,
the identical name should be used only when the variables also have the identical

meaning. When the meanings of two variables are only similar or coincidental, use

unique names to avoid confusion.

10 SEL-94-003

Readablllly and MalnlalnabllHy

2.4.3 Capitalization

The following capitalization style is recommended because it gives the programmer as

well as the reader of the code more information.

• Variables: Use lower-case words separated by underscores.

• Function names: Capitalize the first letter of each word; do not use
underscores.

• Constants:

• C bindings:

name.

Use upper-case words separated by underscores.

Use the letter "c" followed by an underscore and the binding

Example: capitalization style

open_database variables
ProcessError function names

MAX COUNT constants

c_ephemrd C bindings

Type and Constant Names

Type names (i.e., created with typedef): Follow the naming standards for

global variables.

Enumeration types (declared using enum) and constants declared using

const: Follow the naming conventions for constants.

SEL-94-003 11

3 PROGRAM
ORGANIZATION

This section discusses organizing program code into files. It

points out good practices such as grouping logically related

functions and data structures in the same file and controlling the

visibility of the contents of those files. Figure 2 illustrates the

organizational schema that the discussion will follow.

Program README

Standard libraries

Header files

Program files

Module files

Compilation

<stdio.h>

<math.h>

"globals.h"

"types.h"

program_file.c

File prolog
Usage and operating instructions
Header file includes

External definitions and declarations

Functions

Function prolog

Function parameters
Internal definitions and declarations

Statements

Operators

Expressions
More external data

More functions

module_file.c
utilities Makefile

Figure 2 Program Organization

3.1 Program Files

A C program consists of one or more program files, one of which contains the main()

function, which acts as the driver of the program. An example of a program file is

SEL-94-003 13

Program Organization

given in Section 9. When your program is large enough to require several files, you

should use encapsulation and data hiding techniques to group logically related

functions and data structures into the same files. Organize your programs as follows:

• Create a README file to document what the program does.

• Group the main function with other logically related functions in a program
file.

• Use module files to group logically related functions (not including the main

function).

• Use header files to encapsulate related definitions and declarations of variables
and functions.

• Write a Makefile to make recompiles more efficient.

3.2 README File

A README file should be used to explain what the program does and how it is

organized and to document issues for the program as a whole. For example, a

README file might include

• All conditional compilation flags and their meanings.

• Files that are machine dependent.

• Paths to reused components.

3.3 Standard Libraries

A standard library is a collection of commonly used functions combined into one file.

Examples of function libraries include "stdio.h" which comprises a group of

input/output functions and "math.h" which consists of mathematical functions.

When using library files, include only those libraries that contain functions that your

program needs. You may create your own libraries of routines and group them in
header files.

3.4 Header Files

Header files are used to encapsulate logically related ideas; for example the header file

"time.h" defines two constants, three types, and three structures, and declares seven

functions needed to process time. Header files may be selectively included in your

program files to limit visibility to only those functions that need them.

14 SEL-94-003

Program Organization

Header files are included in C source files before compilation. Some, such as "stdio.h"

are defined system-wide, and must be included by any C program that uses the

standard input/output library. Others are used within a single program or suite of

programs. An example of a header file is given in Section 9.

• Use #include <system_name> for system include files.

• Use #include "user file" for user include files.

• Contain in header files data definitions, declarations, typedefs, and enums that

are needed by more than one program.

• Organize header files by function.

• Put declarations for separate subsystems in separate header files.

• Ira set of declarations is likely to change when code is ported from one

platform to another, put those declarations in a separate header file.

• Avoid private header filenames that are the same as library header filenames.

For example, the statement #include <math.h> will include the standard library

math header file if the intended one is not found in the current directory.

• Include header files that declare functions or external variables in the file that

defines the function or variable. That way, the compiler can do type checking

and the external declaration will always agree with the definition.

• Do not nest header files. Use explicit #include statements to include each

header file needed in each program file.

• In the prolog for a header file, describe what other headers need to be included
for the header to be functional.

3.5 Module Files

A module file contains the logically related functions, constants, types, data

definitions and declarations, and functions. Modules are similar to a program file

except that they don't contain the main() function.

3.6 Makefiles

Makefiles are used on some systems to provide a mechanism for efficiently

recompiling C code. With makefiles, the make utility recompiles files that have been

changed since the last compilation. Makefiles also allow the recompilation commands

to be stored, so that potentially long cc commands can be greatly abbreviated. An

example ofa Makefile is given in Section 9. The makefile

• Lists all files that are to be included as part of the program.

SEL-94-003 15

Program Organization

• Contains comments documenting what files are part of libraries.

• Demonstrates dependencies, e.g., source files and associated headers using

implicit and explicit rules.

3.7 Standard Filename Suffixes

The suggested format for source code filenames is an optional prefix (e.g., to indicate

the subsystem), a base name, and an optional period and suffix. The base name

should be unique (length may vary depending on your compiler; some limit filenames

to eight or fewer characters) and should include a standard suffix that indicates the file
type. Some compilers and tools require certain suffix conventions for filenames.

Figure 3 lists some standard suffixes; or use those dictated by your compiler.

File Type Standard Suffix

C source file .c

Assembler source .s

Relocatable object .o
Include header .h

Yacc source .y
Lex source . I

Loader output file .out
Makefile .mak

Linker response files .Ink or .rsp

Figure 3 Standard Filename Suffixes

16 5EL-94-003

4 FILE

ORGANIZATION

The organization of information within a file is as important to

the readability and maintainability of your programs as the

organization of information among files. In this section, we will

discuss how to organize file information consistently. Figure 4

provides an overview of how program file and module

information should be organized.

File Prolog, including the algorithm expressed in PDL

Usage and Operating Instructions, if applicable for program files only

Header File Includes, in this sequence:
#include <stdio.h> (or <stdlib.h>)
#include <other system headers>
#include "user header files"

Defines and Typedefs that apply to the file as a whole, including:
enums
typedefs
constant macro defines
function macro defines

External Data Declarations used by this file
extern declarations of variables defined in other files

non-static external definitions used in this file (and optionally
in others if they are declared in those files using extern)

static external definitions used only in this file

Functions
function prolog
function body

More External Data Declarations used from point of declaration to end of file

More Functions

Figure 4 File Organlzaflon Schema

SEL-94-003 17

FileOrganization

4.1 File Prolog

A file prolog introduces the file to the reader. Every file must have a prolog. Figure 5

is an example ofa prolog outline; field values are described below.

/* ****'k ik Ik * ** * W "k *** * * **'k Ib * * * *'k ** * '/r 'k ** * * * "A"W*'/r ** * *'A" * * * W * * * *** **** ** * 'k***

FILE NAME: *

PURPOSE:

FILE REFERENCES :

Name Description

*

* *

. *

* *

* *

* *

* I/O *
* ------ *

* EXTERNAL VARIABLES : *

* Source: < > *

* Name TyPe I/O Description *

* EXTERNAL REFERENCES : *
, *

* Name Description *

* ABNORMAL TNRN]_ATION CONDITIONS, ERROR AND WARNING NES_.GES: *

* ASSUMPTIONS, CONSTRAINTS, RESTRICTIONS: *
. *

* NOTES : *

* RNQUI_S/_XJNCTION_ SPECIFICATIONS REFERENCES: *

* DEVELOPMENT HISTORY : *

* Date Author Change Id Release Description Of Change *
. *

* ALGORITHM (PDL) *

Figure S Program File Prolog Contents

• File Name---Specify the name of the file.

• Purpose--- Briefly state the purpose of the unit.

18 SEL-94-003

FileOrganization

• File References--Specify the name, I/O, and description of files used by
functions within this file. If the file does not have file references, indicate so

by entering "none."

• External Variables--Specify the source, name, type, I/O, and description of
variables being used by the unit that do not come in through the calling

sequence. If the unit does not have external variables, indicate so by entering
"none."

• External References--Specify the exact name of each unit called or invoked
by this unit, followed by a one-line description of the unit. If the unit does
not have external references, indicate so by entering "none."

• Abnormal Termination Conditions, Error and Warning Messages--
Describe the circumstances under which the unit terminates abnormally. List
error messages that this unit issues and briefly explain what triggers each.

• Assumptions, Constraints, RestrictionsmDescribe the assumptions that

are important to the design and implementation of the unit (e.g., "It is assumed

that all input data have been checked for validity.") Include descriptions of
constraints and restrictions imposed by the unit (e.g., "The unit must

complete its execution within 75 microseconds.") This section contains

information that explains the characteristics and peculiarities of the unit.

• Notes--Specify any additional information needed to understand the file's
data or functions.

• Requirements/Functional Specifications References--Provide traceability
between requirements and specifications and implementation.

• Development History--Outline the file's development history:

- Date, day, month, and year of the change

- Author, author of the current implementation or change to the unit

- Change Id, an identification number for the change; e.g., if the change is

related to a numbered SPR, that number may be used to correlate the

change to the SPR

- Release, current software release and build in abbreviated form

- Description of Change, brief narrative describing the change

• Algorithm (PDL)--Descfibe the algorithm used in the program in PDL
format. See Section 4.2 for a detailed discussion of algorithm/PDL.

SEL-94-003 19

FileOrganization

Header files (non-program files) such as those containing global definitions,

prototypes, or typedefs, should have an abbreviated prolog as shown in Figure 6.

* NAME:

* PURPOSE:
.

* GI.DB_ VARY.J_I__S :

* Variable Type

*

* DEV'NI._PMENT HISTORY:

* Date Author Change Id

Descript ion

Release Description Of Change

Figure 6 Header File Prolog

4.2 Program Algorithm and PDL

This section of the file prolog describes the overall algorithm of the program or any

special or nonstandard algorithms used. This description in the prolog does not

eliminate the need for inline comments next to the functions. In fact, adding

comments to your functions is recommended to help others understand your code.

In the SEL environment, programmers follow a prescribed PDL style which is

documented both in the Programmer's Handbook for Flight Dynamics Software

Development as well as CSC's SSDM (see Bibliography). The PDL constructs are

summarized here, along with the corresponding C code. These guidelines are

consistent with the Programmer's Handbook.

PDL describes the processing and control logic within software units through the use

of imperative English phrases and simple control statements. Follow these general

guidelines when creating PDL.

• Indent by four spaces the statements defining the processing to occur within a

PDL control structure (unless the code is highly nested and it would run off

the fight side of the page).

• Within a control structure, align each PDL control structure keyword (e.g.,

align the IF, ELSE, etc.). Also align each embedded statement.

20 SEL-94-003

FileOrganization

• If a single PDL statement spans multiple print lines, begin each statement

continuation line one space to the right of the parent line.

PDL includes four types of statements, which are described in detail in the paragraphs
to follow:

• Sequence

• Selection Control

• Iteration Control

• Severe Error and Exception Handling

4.2.1 Sequence Statements

A PDL sequence statement describes a processing step that does not alter logic flow.

Specify this type of PDL statement as a declarative English-language sentence

beginning with a single imperative verb followed by a single direct object.

verb object

Assignment statements may be used only in the event that mathematical formula must

be specified.

C=A+B

To call a unit, use a verb (e.g., CALL) followed by the unit name. The unit name may

be followed by a list of descriptive parameters from the calling sequence to that unit

or by a phrase describing the function or purpose &the unit being called.

CA_ <unit _

To signal the end of processing within a unit, use the verb RETURN. A return

statement implies an immediate return to the calling entity.

RE'IURN

4.2.2 Selection Control Statements

Selection control statements define the conditions under which each of several

independent processing paths is executed. There are three PDL selection control

structures: IF THEN ELSE, IF THEN, and CASE. Each of them is shown below in

its PDL format and with an example of corresponding C code.

SEL-94-003 21

FileOrganlzatlon

4.2.2.1 IF THEN ELSE

The basic format of an if then else statement is:

IF cmndition THSN

true processing

ELSE

false processing

_NDIF

Example: PDL

IF shuttle and payload mode

CALL addstr to display shuttle title

ELSE IF freeflyer only mode THEN

CALL addstr to display ff title

ELSE

CALL addstr to display both titles

_DIF

Example: C code

if (objdisp == SHUT_PAYII3AD)

addstr("SHUTILE DAqlA") ;

else if (objdisp == FF)

addstr("FREEFLYSR DAq]_");

else

addstr ("SHUITLE/FF DAqA");

4.2.12 IF THEN

The general format of an if then statement is:

IF ccndition TH_q

true processing

_qDIF

Example: PDL

IF offset between request time and time of last calculated

s/c position and velocity vectors exceeds wait time qHEN

elapsed seconds between epoch time and request

time

_qgIF

Example: C code

if ((t_request- t_rv_ref) > t_wait)

eptime = t_request - orbital_t_epoch;

22 SEL-94-003

File Organization

4.2.2.3 CASE

The general format of a case statement is:

DO CASE of (name)

CASE 1 ccnditicn:

case 1 processing
CASE 2 cc_diticn:

case 2 processing

CASE n ccnditi_:

case n processing

ELSE (opticnal)

else-condition processing
H_DO CASE

OTHERWISE can be substituted for the ELSE keyword.

Example: PDL

DO CASE of axes color

black:

set color to black

yellow:

set color to yellow
red:

set color to red

_SE:

set color to green
[NEDO CASE

Example: C code

switch (axescolor)

{
case 'B':

color = BLACK;

break;
case 'Y' :

color = YELLOW;

break;
case 'R' :

color = RED;

break;
default:

color = GREHN;

break;

SEL-94-003 23

File Organization

4.2.3 Iteration Control Slatemenls

Iteration control statements specify processing to be executed repeatedly. There are

three basic iteration control structures in PDL: DO WHILE, DO FOR, and DO

UNTIL.

4.2.3.1 DO WHILE

The general format of a do while statement is:

DO WHILE "continue loop" condition true

true processing

_qDDO WHILE

Example: PDL

DO WHILE ui buffer not empty

CALL process_ui issue requests

_qID WHILE

Example: C code

while (ui_b_E != _z)
process__ (ui_b_E, num) ;

4.2.3.2 DO FOR

The general format of a do for statement is:

DO FOR specified discrete items

loop processing
_KDO FCR

Example: PD/

DO FOR each _s view (X, Y, Z)
seCvi_ Co create view

DO FC

Example: C code

for (i=0; i < 4; i++)

setview(sys, i) ;

24 SEL-94-003

FileOrganization

4.2.3.3 DO UNTIL

The general format of a do until statement is:

DO UNTIL "exit loop" condition true

loop processing
EhDDO UNTIL

Example: PDL

DO UNTIL no ui requests remain
CALL process_ui to issue requests

_XDDO UNTIL

Example: C code

do
process_ui(ui_buf, num) ;

while (ui_count .'= 0);

4.2.4 Severe i_mrand Exception Handling Statemenls

When a serious error or abnormal situation occurs several levels deep in if or do

statements, you may want simply to set an error flag and return to the caller. Using

only the constructs described so far, the choices are limited to setting an abort flag and

checking at each level of nesting. This can quickly complicate an otherwise clean

design. Two PDL statements are available to aid in the handling of severe errors and

exceptions: ABORT to (abort_label) and UNDO.

4.2.4.1 ABORT

ABORT to is used to jump to a named block of processing at the end of the routine.

The block's purpose is to set a fatal error indication and exit the routine. Placing all

abort processing at the end of the routine helps all abnormal condition logic to stand

out from the normal processing.

Example: PDL

DO WHILE more records r_in to be processed

read next record from file

IF an invalid record is encountered

ABORT to INV_REC_FND
_q3IF

(cont'd next page)

SEL-94-003 25

FlleOrganlzaflon

Example: ABORT PDL [cont'd)

(process
WHILE

.*,

INV l_C F_:
inform user of the

set invalid record

this record)

invalid record

indicator

just found

In C, you use a goto statement to exit out of nested loops. Note that you should use

goto statements only for unusual circumstances. In most cases, it is possible to use

structured code instead of using a goto. The two examples below show the same

scenario using structured code and using a goto statement.

Example: structured code

%bile (... && no_error)

for (...)

if (disaster)

error = true;

if error

error_processing;

Example: goto statement

while (...)

for (...)

if (disaster)

goto error;

error:

error_processing;

4.2.4.2 UNDO

UNDO is used within a do (while, for, until) construct to terminate the current loop

immediately. That is, processing jumps to the statement following the ENDDO of

the current do construct. In C, you could use a break statement to exit out of an inner

loop. If'you can avoid the use of breaks, however, do so.

26 SEL-94-003

File Organization

Example: PDL

DO WHILE more records re_ain to be processed

read next record frcm file

IF an invalid record is encountered

L_DO

_qDIF

(process this record)
HNDD3 WHILE

Example: C code with break statement

while <more records remain to be processed>

(
read next record from file

if <an invalid record is encountered>

break;
process this record

Example: C code with no break statement

while (more records remain to be processed && no_error)

{
read next record frcrn file

if <an invalid record is encountered>

error = true;

else

process this record

4.3 Include Directive

To make header file information available to your program files, you must specifically
include those header files using the #include preprocessor directive. For optimum
efficiency and clarity, include only those header files that are necessary.

• If the reason for the #include is not obvious, it should be commented.

• The suggested file order is:

#include <stdio.h> (or <stdlib.h>)

#include <other system headers>

#include "user header files"

SEL-94-003 27

File Organization

4.4 Defines and Typedefs

After including all necessary header files, define constants, types, and macros that

should be available to the rest of the file (from the point of declaration to the end of
the file). Include the following, in the sequence shown:

• Enums

• Typedefs

• Constant macros (#define identifier token-string)

• Function macros (#define identifier(identifier, ..., identifier) token-string)

4.5 External Data Declarations and Definitions

After defining constants, types, and macros, you should next have a section in your
file to declare external variables to make them visible to your current file. Define

those variables that you want to be available ("global") to the rest of the file. The

suggested sequence for declaring and defining external data is:

• Extern declarations of variables defined in other files

• Non-static external definitions used in this file (and, optionally, in others if

they are declared in those files using the extern declaration)

• Static external definitions used only in this file

4.6 Sequence of Functions

This section provides general guidelines for arranging functions in the program file.

The organization of information within functions is described in Section 5.

• If the file contains the main program, then the main() function should be the
first function in the file.

• Place logically related functions in the same file.

• Put the functions in some meaningful order.

- A breadth-first approach (functions on a similar level of abstraction

together) is preferred over depth-first (functions defined as soon as

possible before or after their calls).

- If defining a large number of essentially independent utility functions, use

alphabetical order.

• To improve readability, separate functions in the same file using a single row
of asterisks.

28 5EL-94-003

File Organization

• Place functions last in a program file, unless (due to data hiding) you need to
declare external variables between functions.

Example: functions with separators

prolog
main boo_

function_a prolog

function_a b3cly

function_b prolog
function b body

Example: functions with an external variable

funcl ()

{
..o

}

/* The following external variable will be available

/* to func2 but not to funcl */

int count;

rune2()
{

]

S£L-94-003 29

FUNCTION
ORGANIZATION

This section discusses guidelines for organizing information

within functions. Figure 7 provides an overview of how

information should be organized within functions.

Function prolog
Name of the function

Arguments of the function
Return value of the function

Function argument declarations
External variable declarations

Internal variable declarations

Automatic internal variable definitions

Static internal variable definitions

Statement =paragraphs" (major sections of the code)
Block comment introducing the algorithm to be performed by

the group of statements
Statements (one per line)

Return statement

Figure 7 Function Organization Schema

5.1 Function Prologs

Every function should have a function prolog to introduce the function to the reader.

The function prolog should contain the following information:

• Function name

- One or more words all in lower case and separated by underscores

Upper case OK if name includes a proper noun (e.g.,

Gaussian_distribution)

Followed by brief descriptive comment

• Arguments listed one per line with the type, I/O, and a brief description

• Return value describes what the function returns

SEL-94-003 31

PAGE._'_-_m iNTENTiONALLYE,._Ai.,K

Function Organization

Example: function prolog

* _C_T _: *

*_: *

* _ TYPE I/O DESCRIPTION *
* *

* _S: *

For a function with a non-boolean return value or no return value (a return of void),

the name should be an imperative verb phrase describing the function's action, or a

noun phrase. For a function that returns a boolean value, its name should be a

predicate-clause phrase.

Example: imperative verb phrase

obtain_next_token

increment_line_counter

Example: noun phrase

Example:

to__of_stack

sensor_reading

predicate-clause phrase

stack is empty

file_is_saved

5.2 Function Arguments

Declare function arguments when the function is defined (even if the type is integer).

Define functions arguments beginning in column 1. Note that arguments are explained

in the function prolog, and therefore do not require explanatory comments following
the function declaration.

32 SEL-94-003

FunctionOrganization

Example: function argument declarations

int getline (char *str, int length)

{

]

5.3 External Variable Declarations

Declare external variables immediately after the opening brace of the function block.

Example: external variable declaration

char *save_string(char *string)

{
extern char *malloc ();

}

5.4 Internal Variable Declaratiom

Internal variables--i.e., those used only by the function (also known as local

variables)--should be defined after the external variables. Follow these guidelines for
internal-variable declarations:

• Align internal variable declarations so that the first letter of each variable name
is in the same column.

• Declare each internal variable on a separate line followed by an explanatory
comment.

- The only exception is loop indices, which can all be listed on the same line
with one comment.

• Ira group of functions uses the same parameter or internal variable, call the

repeated variable by the same name in all functions.

• Avoid internal-variable declarations that override declarations at higher levels;
these are known as hidden variables. See Section 2.4.2 for a discussion of

hidden variables.

5.5 Statement Paragraphing

Use blank lines to separate groups of related declarations and statements in a function
(statement "paragraphing") to aid the reader of the code. In addition, inline

comments can be added to explain the various parts of the function.

SEL-94-003 33

FunctionOrganization

Example: statement paragraphing

char *save_string(char *string)

{
register char *ptr;

/*

* if allocation of the input string is successful,

* save the string and return the pointer; otherwise,

* return null pointer.

*/

if ((ptr = (char *)malloc(strlen(string) + i)) .'=

(char *) NULL)

strcpy (ptr, string);

return (ptr) ;

}

5.6 Return Statement

The return statement is the mechanism for returning a value from the called function

to its caller. Any expression can follow return:

return (expressicn)

• Using an expression in the return statement may improve the efficiency of the

code. Overdoing its use, however, increases the difficulty of debugging.

• Do not put multiple return and exit statements in a function, unless following

this rule would result in convoluted logic that defeats the overriding goal of

maintainability.

• Always declare the return type of functions. Do not default to integer type

(int). If the function does not return a value, then give it return type void.

• A single return statement at the end of a function creates a single, known point

which is passed through at the termination of function execution.

• The single-return structure is easier to change. If there is more to do after a
search, just add the statement(s) between the for loop and the return.

34 SEL-94--003

FunctionOrganization

Example: single return

found = FALSE;

for (i=0 ; i<max && :found ; i++)

if (vec[i] == key)

found = TRUE;

return (found) ;

Example: multiple returns

for (i=0 ; i<max ; i++)

if (vec[i] == key)

return (TRUE) ;

return (FALSE) ;

SEL-94-.003 35

6 DATA TYPES, OPERATORS,
AND EXPRESSIONS

This section provides examples of the proper way to format
constant and variable definitions and declarations and discusses

data encapsulation techniques There are several general
guidelines to follow when working with types:

• Define one variable or constant per line

• Use short comments to explain all variables or constants

• Group related variables and constants together

6.1 Variables

When declaring variables of the same type, declare each on a separate line unless the

variables are self-explanatory and related, for example:

int year, rronth, day;

Add a brief comment to variable declarations:

int x; /* _t */

int y; /* _t */

Group related variables. Place unrelated variables, even of the same type, on separate
lines.

int x, y, z;

int year, month, day;

6.2 Constants

When defining constants, capitalize constant names and include comments. In
constant definitions, align the various components, as shown in the examples below.
In ANSI C, there are several ways to specify constants: const modifier, #define

command, and enumeration data types.

SEL-94-OO3 37

.............._,,._,,,-_,,;,._._ ,::_. _;_o._,_ _<4__ _J_;
PAGE o_ h'_I'EN'flO'_ALLY E_.Ai:_K

Data Types, Operators, and Expressions

6.2.1 Corot Modifier

Use the const modifier as follows:

ccr_t int SIZE 32;

const int SIZE 16 + 16;

/* size in inches */

/* both evaluate to the ntmT_r 32 */

6.2.2 #def'me Conmmd

The #define preprocessor command instructs the preprocessor to replace subsequent

instances of the identifier with the given string of tokens. It takes the form:

#define IIZgZgIFIER token-string

In general, avoid hard-coding numerical constants and array boundaries. Assign each a

meaningful name and a permanent value using #define. This makes maintenance of

large and evolving programs easier because constant values can be changed uniformly

by changing the #define and recompiling.

#define NLLL 0

#define BSS '\0'

#define FALSE 0

#define TRUE 1

Using constant macros is a convenient technique for defining constants. They not

only improve readability, but also provide a mechanism to avoid hard-coding
numbers.

6.2.3 Enumeration Types

Enumeration types create an association between constant names and their values.

Using this method (as an alternative to #define), constant values can be generated, or

you can assign the values. Place one variable identifier per line and use aligned braces

and indentation to improve readability. In the example below showing generated

values, low would be assigned 0, middle 1, and high 2. When you assign values

yourself, align the values in the same column, as shown in the second example.

Example: generated values

enum positicn

{

LCW,

MIEDLE,

HI_

];

38 SEL-94-003

Data Types, Operators, and Expressions

Example: assigned values

ent_n stack_operat icn_resul t

(
FULL = -2,

BAD_Sqg;_ = -I,

CKAY = 0,

RDT__IY = 0,
EMPIY =i

};

6.2.4 Simple Constants

Use the const modifier instead of the #define preprocessor to define simple constants.

This is preferable because #define cannot be used to pass the address of a number to a

function and because #define tells the preprocessor to substitute a token string for an
identifier, which can lead to mistakes (as illustrated in the example below).

Example: using #define

#define SIZE I0 + i0 /* i0 + i0 will be substituted for SIZE */

°o.

= SIZE * SIZE; /* this evaluates to 10 + 10 * 10 + 10 */
/* which is I0 + (i0 * I0) + I0 = 120 */

Example: using the const modifier

const int SIZE = i0 + i0;

area = SIZE * SIZE;

/* SIZE evaluates to the number 20 */

/* this evaluates to 20 * 20 = 400 */

6.3 Variable Definitions and Declarations

6.3.1 Nun_rs

Floating point numbers should have at least one number on each side of the decimal

point:

0.5 5.0 1.0e+33

Start hexadecimal numbers with 0x (zero, lower-case x) and upper case A-F:

0x223 0xFFF

SEL-94-003 39

Data Types, Operators, and Expresslons

End long constants in upper-case L:

123L

6.3.2 Qaalifiers

Always associate qualifiers (e.g., short, long, unsigned) with their basic data types:

short int x;

icng int y;

unsigned int z;

6.3.3 Slnlctmes

The use of structures is one of the most important features of C. Structures enhance

the logical organization of your code, offer consistent addressing, and will generally

significantly increase the efficiency and performance of your programs.

Using common structures to define common elements allows the program to evolve

(by adding another element to the structure, for example), and lets you modify storage

allocation. For example, if your program processes symbols where each symbol has a

name, type, flags, and an associated value, you do not need to define separate vectors.

Example: structures

typedef struct symbol

{
char *name;

int type;

int flags;

int value;

} swmbol_type;
syr_l_t-ype sya_l_table [NSYMB];

6.3.4 Aut_nmlic Variables

An automatic variable can be initialized either where it is declared or just before it is

used. If the variable is going to be used close to where it is declared (i.e., less than one

page later), then initialize it where it is declared. However, if the variable will be used

several pages from where it is declared, then it is better practice to initialize it just
before it is used.

40 SEI..-94-003

Data Types, Operators, and Expressions

Example: variable initialized where declared

int max = O;

/* use of max is within a page of where it is declared */

for (i=O; i<n; i++)

if (vec [i] > max)

max = vec[i] ;

Example: variable initialized where used

Use an assignment statement just before the for loop:

int iret,_;

,oo

/* several pages between declaraticn and use */

o.o

m_x= O;

for (i=O ; i<n ; i++)

if (vec[i] > max)

max = vec [i] ;

Or use the comma operator within the for loop:

int _;

/* several pages between declaraticn and use */

for (max = O, i=O; i<n; i++)

if (vec[i] > m_x)
max = vec[i];

6.4 Type Conversions and Casts

Type conversions occur by default when different types are mixed in an arithmetic
expression or across an assignment operator. Use the cast operator to make type

conversions explicit rather than implicit.

Example: explicit type conversion (recommended}

float f;

int i;

f = (int) i;

5EL-94.-003 41

Data Types, Operators, and Expressions

Example: implicit type conversion

float f;

int i;

f=i;

6.5 Pointer Types

Explicitly declare pointer entities (variables, function return values, and constants)

with pointer type. Put the pointer qualifier (*) with the variable name rather than

with the type.

Example: pointer declaration

char *s, *t, *u;

6.6 Pointer Conversions

Programs should not contain pointer conversions, except for the following:

• NULL (i.e., integer 0) may be assigned to any pointer.

• Allocation functions (e.g., malloc) will guarantee safe alignment, so the

(properly cast) returned value may be assigned to any pointer. Always use

sizeofto specify the amount of storage to be allocated.

• Size. Pointers to an object of given size may be converted to a pointer to an

object of smaller size and back again without change. For example, a pointer-

to-long may be assigned to a pointer-to-char variable which is later assigned

back to a pointer-to-long. Any use of the intermediate pointer, other than

assigning it back to the original type, creates machine-dependent code. Use it
with caution.

Operator Formatting

Do not put space around the primary operators: -),., and [] :

p->m s.m a[i]

Do not put a space before parentheses following function names. Within

parentheses, do not put spaces between the expression and the parentheses:

exp (2, x)

42 SEL-94-003

DataTypes,Operators, and Expressions

• Do not put spaces between unary operators and their operands:

!p q3 ++i -n *p &x

• Casts are the only exception, doput a space between a cast and its operand:

(icng) m

• Always put a space around assignment operators:

cl =C2

• Always put a space around conditional operators:

z = (a >b) ? a : b;

• Commas should have one space (or newline) after them:

strncat(t, s, n)

• Semicolons should have one space (or newline) after them:

for (i = O; i < n; ++i)

• For other operators, generally put one space on either side of the operator:

x+y a< b&&b< c

• Occasionally, these operators may appear with no space around them, but the

operators with no space around them must bind their operands tighter than

the adjacent operators:

printf (fxnt, a+l)

• Use side-effects within expressions sparingly. No more than one operator

with a side-effect (% op =, ++, --) should appear within an expression. It is

easy to misunderstand the rules for C compilation and get side-effects

compiled in the wrong order. The following example illustrates this point:

if ((a < b) && (c=--d)) ...

Ira is not < b, the compiler knows the entire expression is false so (c = d) is

never evaluated. In this case, (c _ d) is just a test/relational expression, so

there is no problem. However, if the code is:

if ((a < b) && (_=d++))

d will only be incremented when (a < b) because of the same compiler

efficiency demonstrated in the first example.

SEL-94-003 43

DataTypes,Operators, and Expressions

CAUTION: Avoid using side-effect operators within relational expressions.

Even if the operators do what the author intended, subsequent reusers may

question what the desired side-effect was.

• Use comma operators exceedingly sparingly. One of the few appropriate

places is in a for statement. For example:

for (i = 0, j = I; i < 5; i++, j++);

• Use parentheses liberally to indicate the precedence of operators. This is

especially true when mask operators (&, I, and A) are combined with shifts.

• Split a string of conditional operators that will not fit on one line onto separate

lines, breaking after the logical operators:

if (p->next == I',[]LL &&

(total_count < needed) &&

(needed <= MAX_AII/YP) &&

(server_active(current_input)))

statement_l;

statement_2;

statement_n;

6.8 Assignment Operators and Expressions

C is an expression language. In C, an assignment statement such as "a = b" itself has a

value that can be embedded in a larger context. We recommend that you use this

feature very sparingly. The following example shows a standard C idiom with which

most C programmers are familiar.

Example: embedded assignments

while ((c = getchar())

{

staten_nt_l;

statement_2;

statement_n;

}

'= BOF)

However, do not overdo embedding of multiple assignments (or other side-effects) in

a statement. Consider the tradeoff between increased speed and decreased

maintainability that results when embedded statements are used in artificial places.

44 SEL-94-003

DataTypes,Operators, and Expressions

Example: nonembedded statements

total = get_total ();

if (total == I0)

printf ("goal achieved\n");

Example: embedded statements (not recommended}

if ((total = get_total() == i0)

printf ("goal achieved\n")

6.9 Conditional Expressions

In C, conditional expressions allow you to evaluate expressions and assign results in a
shorthand way. For example, the following if then else statement

if (a > b)

z=a;
else

z=b;

could be expressed using a conditional expression as follows:

z = (a > b) ? a : b; /* z = m_x(a, b) */

While some conditional expressions seem very natural, others do not, and we

generally recommend against using them. The following expression, for example, is
not as readable as the one above and would not be as easy to maintain:

c = (a == b) ? d + f(a) : f(b) - d;

Do not use conditional expressions if you can easily express the algorithm in a more
clear, understandable manner. If you do use conditional expressions, use comments to
aid the reader's understanding.

6.10 Precedence and Order of Evaluation

There are 21 precedence rules. Rather than trying to memorize the rules or look them

up every time you need them, remember these simple guidelines from Steve Oualline's

C Elements of SO,le:

• * % / come before + and -

• Put () around everything else

SEL-94-.003 45

7 STATEMENTS

AND CONTROL FLOW

This section describes how to organize statements into logical

thoughts and how to format various kinds of statements. The
general principles for writing clear statements are as follows:

• Use blank lines to organize statements into paragraphs and

to separate logically related statements.

• Limit the complexity of statements, breaking a complex

statement into several simple statements if it makes the
code dearer to read.

• Indent to show the logical structure of your code.

7.1 Sequence Statements

This section describes the rules for formatting statements in blocks.

7.1.1 Statement Placement

Put only one statement per line (except in for loop statements):

switch (axescolor)

{
case 'B' :

color = BLACK;

break;
case 'Y' :

color = YEI/_C_;

break;

case 'R' :

color = RED;

break;
default:

color = GREE_;

break;
}

SEL-94-003 47

Statements and Control Flow

Avoid statements that rely on side-effect order. Instead, put the variables with
operators ++ and -- on lines by themselves:

*destination = *source;

destinaticn++;

source++;
a[i] = b[i++];

It is recommended that you use explicit comparison even if the comparison value

will never change. For example, this statement:

if (.'(bufsize % sizeof (int)))

should be written instead as

if ((bufsize % sizeof (int)) == O)

to reflect the numeric (not boolean) nature of the test.

7.1.2 Braces

Compound statements, also known as blocks, are lists of statements enclosed in

braces. The brace style we recommend is the Braces-Stand-Alone method. Place
braces on separate lines and align them. This style, which is used throughout this

document, allows for easier pairing of the braces and costs only one vertical space.

Example: Braces-Stand-Alone method

for (i = O, j = strlen(s)-l;

(
c = s [i] ;

s[i] = s[j];

s[j] = c;
}

i < j; i++, j--)

Although C does not require braces around single statements, there are times when
braces help improve the readability of the code. Nested conditionals and loops can

often benefit from the addition of braces, especially when a conditional expression is

long and complex.

The following examples show the same code with and without braces. We encourage
the use of braces to improve readability. Use your own judgment when deciding
whether or not to use braces, remembering that what is clear to you may not be

obvious to others who read your code.

48 SELo94-003

Statements and Control Flow

Example: braces improve readability

for (dp = &values[0]; dp < top_value; dp++)

{
if (dp->d_value == arg_value

&& (dp->d_flag & arg_flag) .'=0)

{

return (dp);

}
}
return (NULL);

Example: no braces

for (dp = &values[0]; dp < top_value;

if (dp->d_value == arg_value &&

(dp->d_flag & arg_flag) != 0)

return (c_o);
return (NULL) ;

dp++)

If the span of a block is large (more than about 40 lines) or there are several

nested blocks, comment closing braces to indicate what part of the process

they delimit:

for

{
(sy = sytable; sy .'=NLLL;

if

{
.o.

}
else

{
o,o

(sy->sy_flag == DEFINED)

sy = sy->sy_link)

/* if defined */

} /* if undefined */
} /* for all symbols */

If a for or while statement has a dummy body, the semicolon should go on the

next line. It is good practice to add a comment stating that the dummy body is
deliberate.

/* Locate end of string */

for (char_p = string; *chard != EOS; char p++)

; /* do nothing */

Always put a space between reserved words and their opening parentheses.

Always put parentheses around the objects of sizeof and return.

SEL-94.-003 49

Statements and Conlrol Flow

7.2 Selection Control Statements

This section discusses the recommended formatting for selection control statements.

Examples are given to show how to format single statements as well as blocks of
statements.

If

Indent single statements one level:

if (expressicn)

cne_statement;

Indent a block of statements one level using braces:

if (expressicn)

{
statement_l;

statement_n;

}

If I_lse

If else statements that have only simple statements in both the if and else

sections do not require braces but should be indented one level:

if (expressicn)
stat_n_nt

else
statement

If else statements that have a compound statement in either the if or else
section require braces and should be indented one level using braces:

if (expressicn)

cne_statement;
else
{

statement_l;

statement_n;

}

50 SEL-94-003

StatementsandConffolFlow

7.2.3 _eff

For readability, use the following format for else if statements:

if (expressicn)

staten_nt [s]

else if (expression)

statement [s]
else

statement [s]

7.2.4 Nested If Statewents

Z2.4.1 I/I/If

Use nested if statements if there are alternative actions (i.e., there is an action in the

else clause), or if an action completed by a successful evaluation of the condition has
to be undone. Do not use nested if statements when only the if clause contains
actions.

Example: good nesting

status = delta_create ((Callback)NULL, &delta) ;

if (status == NDB_OK)

{
if ((status = delta_record_conditicn(...)) == NDB_OK &&

(status = delta_field_condition(...)) == NDB_OK &&

(status=delta_field_condition(...)) == hDB_OK)

status = delta_cc_mit (delta, ...);

_ample:

(void)ndb_destroy_delta (delta) ;

}

inappropriate nesting

status = delta_create ((Callback)NULL,

if (status == NDB_OK)

{

&delta) ;

status = delta_record_conditicn(delta, ...);

if (status == NDB_OK)

{
status = delta_field_condition (delta, ...);

if (status == NDB_OK)

(cont'd next page)

SEL-94-003 51

Slatemenfi_ and ConErol Flow

Example: inappropriate nesting (cant'd)

{
status = delta_field_condition(

if (status == NDB_OK)

status = delta__coamit(delta,

}
]
(VOID) ndb_destroy_delta (delta) ;

}
return (status) ;

Z2.4.2 IflfElse

Because the else part of an if else statement is optional, omitting the "else" from a

nested if sequence can result in ambiguity. Therefore, always use braces to avoid

confusion and to make certain that the code compiles the way you intended. In the

following example, the same code is shown both with and without braces. The first

example will produce the results desired. The second example will not produce the

results desired because the "else" will be paired with the second "if" instead of the

first.

Example: braces produce desired result

if (n > 0)

{
for (i = 0; i < n; i++)

{
if (s[i] > 0)

{
printf ("... ");

return(i) ;

]
}

}
else /* _ -- braces force proper association

printf ("error - n is zero\n");

*/

52 SEL-94.-003

StatementsandConErolFlow

Example: absence of braces produces undesired result

if

else

(n > O)
for (i = O; i < n; i++)

if (s[i] > O)

{
printf ("... ");

return(i) ;

}
/* _ -- the compiler will match to closest */

/* else-less if */

printf ("error - n is zero\n") ;

7.2.5 Switch

For readability, use the following format for switch statements:

switch (expressicn)

{
case aaa:

statement [s]

break;
case bhb: /* fall through */

case ccc:

statems_t [s]

break;
default:

statement [s]

break;
}

Note that the fall-through feature of the C switch statement should be commented for
future maintenance.

All switch statements should have a default case, which may be merely a "fatal error"

exit. The default case should be last and does not require a break, but it is a good idea

to put one there anyway for consistency.

7.3 Iteration Control Statements

This section discusses the recommended formatting for iteration control statements.
Examples are given to show how to format single statements as well as blocks of
statements.

SEL-94-003 ,53

StatementsandControlFlow

7.3.1 While

For one statement, use the following format:

while (expressicn)

cne_statement;

For a block of statements, use:

while (expressicn)

{

statement_l;

stat6ment_n;

}

7.3.2 For

Use the following formats:

for (expressicn)

cne_statem_nt;

for (expressicn)

{

statement_l;

statement_n;

If a for loop will not fit on one line, split it among three lines rather than two:

for (curr = *listp, trail = listp;

curr !=NULL;

trail = &(curr->next), curt = curr->next)

statement_l;

staten_nt_n;

54 SEL-94-O03

Statements and Conlrol Flow

7.3.3 Do While

For readability, use the following format:

do

{
statem_nt_l;

statement_2;

statement_3;

}
while (expressicn)

7.4 Severe Error and Exception Handling

This section discusses the recommended formatting for goto statements and labels.
We also discuss the use of the break statement. Recommendations in this section

correspond to the severe error and exception handling guidelines given in Section 4.2.4.

Note that although gotos and labels are legal constructs of the C language, we do not

recommend using them if you can write clear structured code without them.

7.4.1 Gotas andLabels

Goto statements should be used very sparingly, as in any well-structured code. They
are useful primarily for breaking out of several levels of switch, for, and while nesting,

as shown in the following example:

}
oo_

error:

for

{
°°°)

if" (disaster)

{
gotoerror;

}

error processing

7.4.2 Bn_ak

A break statement can be used to exit an inner loop of a for, while, do, or switch
statement at a logical breaking point rather than at the loop test. The following

SEL-94-003 55

Statements and Control Flow

examples, which remove trailing blanks and tabs from the end of each input line
illustrate the difference.

Example: logical break

while ((n = getline(line, MAXLd2qE))

{
> o)

vahile (--n >= O)

{
if (line[n] != '

line[n] != 'in')

break;

)

' && line[n] != 'St' &&

Example: /oop test

while ((n = getline(line, MAXLINE))

{
while (--n >= 0 &&

(line[n]==' ' II line [n] == '\t '

; /* _gID */

> o)

II line [n] ==' \n'))

56 SEL-94-O03

8 PORTABILITY AND

PERFORMANCE

Code is often developed on one type of computer and then

ported to and executed on another. Therefore, it is judicious to

make the code as portable as possible, requiring no changes or

minimal ones---such as changes to system-specific header files.

When writing software, consider the following guidelines that

will enhance portability and performance.

8.1 Guidelines for Portability

Use ANSI C whenever it is available.

Write portable code first. Consider detailed optimizations only on computers

where they prove necessary. Optimized code is often obscure.

Optimizations for one computer may produce worse code on another.

Document code that is obscure due to performance optimizations and isolate

the optimizations as much as possible.

• Some code/functions are inherently nonportable. For example, a hardware

device handler, in general, can not be transported between operating systems.

• If possible, organize source files so that the computer-independent code and

the computer-dependent code are in separate files. That way, if the program

is moved to a new computer, it will be clear which files need to be changed for

the new platform.

• Different computers have different word sizes. If'you are relying on a

(predefined) type being a certain size (e.g., int being exactly 32 bits), then

create a new type (e.g., typedef long int32) and use it (int32) throughout the

program; further changes will require only changing the new type definition.

• Note that pointers and integers are not necessarily the same size; nor are all

pointers the same size. Use the system function sizeof(...) to get the size of a

variable type instead of hard-coding it.

• Beware of code that takes advantage of two's complement arithmetic. In

particular, avoid optimizations that replace division or multiplication with
shifts.

• Become familiar with the standard library and use it for string and character

manipulation. Do not reimplement standard routines. Another person reading

SEL-94-003 57

Podablllh/and Performance

your code might see the reimplementation of a standard function and would

need to establish if your version does something special.

Use #ifdefs to conceal nonportable quirks by means of centrally placed

definitions.

Example: centrally placed definitions

#ifdef decus

#define UNSI(_qHD_I£NS

#else

#define UNSIG_D_Iflk_
#endif

icr_

unsigned long

8.2 Guidelines for Performance

Remember that code must be maintained.

If performance is not an issue, then write code that is easy to understand

instead of code that is faster. For example,

replace: d = (a = b + c) + r; with: a = b + c;
d=a+r,

• When performance is important, as in real-time systems, use techniques to

enhance performance. If the code becomes "tricky" (i.e., possibly unclear),

add comments to aid the reader.

• Minimize the number of opens and closes and I/O operations if possible.

• Free allocated memory as soon as possible.

• To improve efficiency, use the automatic increment ++ and decrement

operators -- and the special operations += and *= (when side-effect is not an

issue).

• ANSI C allows the assignment of structures. Use this feature instead of

copying each field separately.

• When passing a structure to a function, use a pointer. Using pointers to

structures in function calls not only saves memory by using less stack space,

but it can also boost performance slightly. The compiler doesn't have to

generate as much code for manipulating data on the stack and it executes faster.

58 SEL-94-O03

9 C CODE
EXAMPLES

The following examples illustrate many of the principles of

good style discussed in this document. They include:

• A Makefile, which provides an efficient mechanism for

building several executables.

• A .c file, which illustrates program file organization and

principles of readability.

• An include file, which illustrates clear and maintainable

definition and organization of constants and external
variables.

SEL-94-003 59

C Code Examples

9.1 Makefile

Makefile for UIX Testing ..

#

#

#

J. Programmer

#

#

#

This makefile can build 8 different executables.

share some of the same code and share libraries.

#

Object code for the executables

#

INIT_OBJS = oi_seq_init.o oi_seq_drv_l.o

GEN_SCREEN_OBJS = oi_seq_gen_screen_PRIVATE.o\

oi_seq_drv_l.o \

oi_seq_resize_pane.o\

oi_seq_get_pane_sizes_PRIVATE.o\

oi_seq_init.o

FATAL_OBJS = oi_seq_drv_2.o\

oi_seq_fatal_PRIVATE.o

PROC_FOCUS_EVENTS_OBJS = oi_seq_drv_3.o\

oi_seq_proc_focus_events.o

LOAD_OBJS = oi_seq_load_drv.o\

oi_seq_load.o\

print_seq.o

SUB_BUILD_I = \

ol_seq_init.o\

ol_seq_gen_screen_PRIVATE.o\

Ol_seq_resize_pane.o\

om_seq_get_pane_sizes_PRIVATE.o\

Ol_seq_proc_focus_events.o\

Ol_seq_load.o\

om_seq_change_exec_type.o\

o1_seq_file_error_PRIVATE.o\

om_seq_enable_sequence_PRIVATE.o\

ol_seq_new_app_PRIVATE.o\

ol_seq_prep_load.o\

ol_seq_change_current_PRIVATE.o\

o1_seq_set_detail_pane_PRIVATE.o\

ol_seq_retrieve_detail_pane_PRIVATE.o\

o1_seq_subbld_l.o

SUB_BUILD_2 = \

The executables

60 SEL-94-003

CCodeExamples

BUILD_2

oz_seq_init.o\

ol_seq_gen_screen_PRIVATE.o\

Ol_seq_proc_focus_events.o\

ol_seq_quit.o\

om_seq_seqcr_spawn_PRIVATE.o\

ol_seq_seqcr_continue.o\

ol_seq_seqcr_handle_sigchld.o\

ol_seq_seqcr_start.o\

oz_seq_seqcr_term.o\

ol_seq_load.o\

ol_seq_change_exec_type.o\

ol_seq_file_error_PRIVATE.o\

ol_seq_enable_sequence_PRIVATE.o\

om_seq__new_app_PRIVATE.o\

ol_seq_prep_load.o\

oz_seq_change_current_PRIVATE.o\

ol_seq_set_detail_pane_PRIVATE.o\

om_seq_retrieve_detail_pane_PRIVATE.o\

o1_seq_new.o\

ol_seq_remove_app.o\

ol_seq_check_seq_ui.o\

ol_seq_seqcr_check_seq_PRIVATE.o\

oz_seq_insert_app.o\

o1_seq_reconfigure_pane_PRIVATE.o\

ol_seq_subbld_2.o

= \
ol_seq_change_current_PRIVATE.o\

om_seq_change_exectype.o\

ol_seq_enable_sequence_PRIVATE.o\

ol_seq_fatal_PRIVATE.o\

ol_seq_gen_screen_PRIVATE.o\

oz_seq_init.o\

oz_seq_load.o\

ol_seq_new_app_PRIVATE.o\

o1_seq_proc_focus_events.o\

om_seq_quit.o\

om_seq_retrieve_detail_pane_PRIVATE.o\

ol_seq_save.o\

ol_seq_set_detail_pane_PRIVATE.o\

om_seq_seqcr_check_seq_PRIVATE.o\

o1_seq_seqcr_continue.o\

ol_seq_seqcr_handle_sigchld.o\

om_seq_seqcr_spawn_PRIVATE.o\

ol_seq_seqcr_start.o\

om_seq_seqcr_term.o\

om_seq_data.o\

o1_seq_reconfigure_pane_PRIVATE.o\

oi seq_b2 stubs.o\

oi_session_mgr_main.o

SEL-94..003 61

C Code Examples

These are included in all executables

OBJS = test__main.o oi_seq_data.o stubs.o

INTERNAL_DEFINES = -DTEST_NO_NCSS

DEFINES =

DEBUG = -g

CUSTOM_FLAGS = -posix -W3 -DXTFUNCPROTO -DFUNCPROTO

CFLAGS = $ (DEBUG) $ (CUSTOM_FLAGS) $ (INCDIR) $ (DEFINES) \

$ (INTERNAL_DEFINES)

INCLUDE PATHS

INCDIR = -I/u/cmps3/UIX/dev/include \

-I/u/cmps3/UIX/codebase5/sco/source

LIBRARIES

NCSS_LIBS = #-incss_c -Irpcsvc -irpc -Isocket

XLIBS = -iXtXm_s -iXmu -IXll_s -IPW

UIXLIBDIR = -L/u/cmps3/UIX/Rl/lib/sco -L/u/cmps3/UIX/dev/lib/sco

UIX_LIBS = -luixdiag -luixutil

UIX_LIBS2 = -imsgr

Compilation for the executables ..o

test_init: $(INIT__OBJS) $(OBJS)

$(CC) -o test_init $(INIT_OBJS) $(OBJS) $(UIXLIBDIR)

$(NCSS_LIBS)\

$(UIX_LIBS) $(XLIBS)

test_gen_screen: $(GEN_SCREEN_OBJS) $(OBJS)

$(CC) -o test_gen_screen $(GEN_SCREEN_OBJS) $(OBJS) $(UIXLIBDIR)\

$(NCSS_LIBS) $(UIX_LIBS) $(XLIBS)

test_fatal: $(FATAL_OBJS) $(OBJS)

$(CC) -o test_fatal $(FATAL_OBJS) $(OBJS) $(NCSS_LIBS) $(UIXLIBDIR)\

$(UIX_LIBS) $(XLIBS)

test_proc_focus_events: $(PROC_FOCUS_EVENTS_OBJS) $(OBJS)

$(CC) -o test_proc_focus_events $(PROC_FOCUS_EVENTS_OBJS) $(OBJS)\

$(UIXLIBDIR) $(UIX_LIBS)

test_load: $(LOAD_OBJS) $(OBJS)

$(CC) -o test_load $(LOAD_OBJS) $(OBJS)\

$(UIXLIBDIR) $(UIX_LIBS) $(XLIBS)

sub_build_l: $(SUB_BUILD_I) $(OBJS)

$(CC) -o $@ $(SUB_BUILD_I) $(OBJS) $(UIXLIBDIR) $(NCSS_LIBS)\

$(UIX_LIBS) $(XLIBS)

sub_build_2: $(SUB_BUILD_2) $(OBJS)

echo $(SUB_BUILD_2)

$(CC) -o $@ $(SUB_BUILD_2) $(OBJS) $(UIXLIBDIR) $(NCSS_LIBS)\

$(UIX_LIBS) $(XLIBS)

build_2: $(BUILD_2)

62 SEL-94-003

CCodeExamples

$(CC) -o $@ $(BUILD_2) $(UIXLIBDIR) $(NCSS_LIBS)\

$ (UIX_LIBS) $ (XLIBS)

clean:

/bin/rm $(INIT_OBJS) $(OBJS) $(GEN_SCREEN_OBJS) $(FATAL_OBJS)\

$ (LOAD_OBJS) $ (SUB_BUILD_l)

depend:

makedepend -- $(CFLAGS) -- "/bin/is *.c"

DO NOT DELETE THIS LINE -- make depends on it.

[a jillion lines that are dependencies generated by makedepend go here]

S£L-94-003 63

CCodeExamples

9.2 C Program File: RF_GetReference.c

_r

_r

qr

9r

_r

_r

FILE NAME: RF_GetReference.c

PURPOSE: This function determines if a requested reference

vector is in need of update. It uses analytic routines

to update vectors and these updates are reflected in the

reference.h include file.

FILE REFERENCES :

Name

none

IO Description

EXTERNAL VARIABLES :

Source : debug.h

Name

debug_f i ie_hand I e

debug_l eve 1

Source : HD_reference.h

Name

ephem_file_lu

ephem_method

Type

FILE*

int[9]

Type

long

char

IO

I

IO

I

keplerian double[6] I

Description

File handle for debug file

name

Debug level array

Description

FORTRAN logical unit number

for the ephemeris file

Method for computing

ephemeris information:

F = Use ephemeris file

A = Compute analytically

using Keplerian

elements

Keplerian orbital elements at

the epoch time

(orbital_t_epoch):

[I] Semimajor axis [km]

[2] Eccentricity

[3] Inclination [rad]

[4] Right ascension of

the ascending node

[rad]

64 SEL-94-003

CCodeExamples

* m_order long

* maxit long

* MU_E doub Ie

* NUMPTS int

* orbital_t_epoch double

* THREEB double

* ttol double

* t_b_ref double

* t_e_ref double

* t m ref double

* t_o_ref double

* trv ref double

* t_s ref double

* e_pos double[3]

* m_pos double [3]

* mag_field double [3]

* mag_field_unit double[3]

* orbit_normal double[3]

* s_c_pos double [3]

* s_c_vel double [3]

* s_pos double [3]

* EXTERNAL REFERENCES:

* Name Description

* c_ephemrd

* c_calpvs

* c_sunlunp

* c_emagfld

* c_nmlist

I

I

I

I

I

I

I

IO

IO

IO

IO

IO

IO

O

O

O

O

O

O

O

O

[5] Argument of perigee

[rad]

[6] Mean anomaly [rad]

Order of magnetic field

Maximum number of iterations

to converge the true

anomaly

Earth gravitational constant

[km^3/sec^2]

Number of points used by the

EPHEMRD interpolator

Base epoch time of the

orbital elements [sec]

Gravitational constant of

perturbations [Km^2]

Tolerance in the calculations

of the true anomaly [rad]

Time of last calculated Earth

magnetic field vector [sec]

Time of last calculated s/c

to Earth unit vector [sec]

Time of last calculated s/c

to Moon unit vector [sec]

Time of last calculated orbit

normal unit vector [sec]

Time of last calculated s/c

position and velocity

vectors[sec]

Time of last calculated s/c

to Sun unit vector [sec]

S/C to Earth unit vector

S/C to Moon unit vector

Earth magnetic field vector

[mG)

Earth magnetic field unit

vector

Orbit normal unit vector

S/C position vector [km]

S/C velocity vector [km/sec]

S/C to Sun unit vector

Retrieves vectors from an ephemeris file and

interpolates them for a requested time

Generates s/c position and velocity vectors

using J2 effects

Generates Earth to Sun or Earth to Moon

vectors

Generates Earth magnetic field vectors

Opens the magnetic field file for reading

SEL-94-003 65

C Code Examples

dr

¢r

dr

dr

¢r

dr

dr

Ib

¢r

dr

dr

dr

¢r

¢r

dr

dr

ib

dr

dr

_r

dr

dr

¢r

/r

dr

/r

dr

dr

dr

dr

dr

dr

¢r

dr

dr

dr

dr

¢r

¢r

te

GetSun

GetOrbitNormal

GetEarth

GetMoon

SecsToCalendar

c_packs t

c_calmjd

c_jgrenha

c_unvec3

Compute s/c to Sun unit vector

Compute orbit normal vector

Compute s/c to Earth vector

Compute s/c to Moon unit vector

Converts time from secornds to standard

calendar format

Converts time from standard calendar format to

an unpacked array format

Computes the modified Julian date of an

unpacked array format time

Computes the Greenwich Hour Angle using

analytical data

Unitizes a vector and computes its magnitude

ABNORMAL TERMINATION CONDITIONS, ERROR AND WARNING MESSAGES:

none

ASSUMPTIONS, CONSTRAINTS, RESTRICTIONS: none

NOTES:

CALLED BY: InitReference, CalcNadirAngle, ConvertAttitude,

ComputeAttitude, CompSunNad, CalcLambdaPhi

REQUIREMENTS/FUNCTIONAL SPECIFICATIONS REFERENCES:

FASTRAD Functional Specifications, Sections 4.3.1 - 4.3.6

DEVELOPMENT HISTORY:

Date Name Change Release Description

ID

09-16-93 J. Programmer 1

10-25-93 J. Programmer 1

11-16-93 J. Programmer 1

12-02-93 J. Programmer 1

12-20-93 J. Programmer 12 1

02-15-94 J. Programmer 15 2

05-03-94 J. Programmer 3

05-10-94 J. Programmer 3

05-10-94 J. Programmer 3

Prolog and PDL

Coded

Controlled

Integrated new RSL

routines

Created intermediate

variables for #define

arguments of calpvs

in order to pass

by address

Corrected time errors

using RSL routines

Enhancements to RSL

prototypes

Added Earth magnetic

field read capability

Added ephemeris read

capability

66 SEL-94.-003

C Code Examples

ALGORITHM

DO CASE of reference type

CASE 1 or 2, request is for s/c position or velocity vectors

IF offset between request time and time of last calculated s/c

position and velocity vectors exceeds wait time THEN

COMPUTE elapsed seconds between epoch time and request time

IF ephemeris method is for reading file THEN

CALL c_ephemrd to read ephemeris file getting s/c position and

velocity vectors

ELSE (analytic computation)

CALL c_calpvs to generate new s/c position and velocity

vectors

ENDIF

SET new time of last calculated s/c position and velocity

vectors to request time

ENDIF

IF reference type is for s/c position vector THEN

SET return vector to s/c position vector

ELSE

SET return vector to s/c velocity vector
ENDIF

CASE 3, request is for s/c to Sun unit vector

IF offset between request time and time of last calculated s/c to

Sun unit vector exceeds wait time THEN

CALL SecsToCalendar c_packst and c_calmjd to get modified

Julian date

CALL c_sunlunp to generate new Earth to Sun vector

CALL GetSun to compute new s/c to Sun unit vector

SET new time of last calculated s/c to Sun unit vector to

request time

* ENDIF

SEL-94-.003 67

C Code Examples

¢r

¢r

¢r

¢r

¢r

_r

_r

¢r

¢r

¢r

_r

¢r

SET return vector to s/c to Sun unit vector

CASE 4 or 5, request is for Earth magnetic field vector or Earth

magnetic field unit vector

IF offset between request time and time of last calculated Earth

magnetic field vector exceeds wait time THEN

CALL SecsToCalendar c_packst and c_calmjd to get modified

Julian date

CALL c_jgrenha to get the Greenwich Hour Angle

CALL c_emagfld to generate new Earth magnetic field vector

CALL c_unvec3 to SET Earth magnetic field unit vector

SET new time of last calculated Earth magnetic field vector to

request time

ENDIF

IF reference type is for Earth magnetic field vector THEN

SET return vector to Earth magnetic field vector

ELSE

SET return vector to Earth magnetic field unit vector

ENDIF

CASE 6, request is for orbit normal unit vector

IF offset between request time and time of last calculated orbit

normal unit vector exceeds wait time THEN

CALL GetOrbitNormal to generate new orbit normal unit vector

SET new time of last calculated orbit normal unit vector to

request time

ENDIF

SET return vector to orbit normal unit vector

CASE 7, request is for s/c to Moon unit vector

IF offset between request time and time of last calculated s/c to

Moon unit vector exceeds wait time THEN

CALL SecsToCalendar c_packst and c_calmjd to get modified Julian

date

CALL c_sunlunp to generate new Earth to Moon vector

CALL GetMoon to compute new s/c to Moon unit vector

SET new time of last calculated s/c to Moon unit vector to

request time

ENDIF

SET return vector to s/c to Moon unit vector

68 SEL-94-.003

C Code Examples

* CASE 8, request is for s/c to Earth unit vector

* IF offset between request time and time of last calculated s/c to

* Earth unit vector exceeds wait time THEN

* CALL GetEarth to compute new s/c to Earth unit vector
.

* SET new time of last calculated s/c to Earth unit vector to

* request time
.

* ENDIF

* SET return vector to s/c to Earth unit vector

* END CASE
.

* RETURN

/* Include global parameters */

#include "HD__debug.h"

#include "HD_reference.h"

/* Declare Prototypes */

void c_ephemrd (long , long , long , double , double *,

double *, double *, double *, long *);

void c_calpvs (double

long

void c_sunlunp (double

void c_emagfl2 (long

long

void c_nmlist (long

void c_packst (double

void c_calmjd (double *, double *);

void c_jgrenha (double , double , long

long *);

void c_unvec3

, double , double *, double , double ,

, double *, double *, long *);

• double , double *, double *);

, double , double , double , double *,

, double *, long *);

• long * , char * , long *);

, double *);

, long

(double *, double *, double *);

, double *,

void GetSun (double[3], double[3]);

void GetOrbitNormal(double[3]);

void GetEarth (double[3]);

void GetMoon (double[3], double[3]);

double SecsToCalendar(double);

* FUNCTION NAME:
.

* ARGUMENT LIST:

* Argument

GetReference

Type IO Description

SEL-94-003 69

C Code Examples

* ref_type int

* t_re_.lest double

* t_wait double

* ref_vector double[3]
.

* RETURN VALUE : void

I

I

I

0

Type of reference data requested

= i, S/C position vector

= 2, S/C velocity vector

= 3, S/C to Sun unit vector

= 4, Earth magnetic field

vector

= 5, Earth magnetic field unit

vector

= 6, Orbit normal unit vector

= 7, S/C to Moon unit vector

= 8, S/C to Earth unit vector

Time of requested reference

vector

Wait time between reference

vector calculations

Requested reference vector

void GetReference(int ref_type, double t_request, double t wait,

double ref_vector[3])

{
/* LOCAL VARIABLES:

* Variable

* sun

* moon

* caldate

* starray

* mjd

* gha

* aldiff

* numselc

* numterm

* fdumm

* ierr

* m

* t

* eptime
.

* dpos

* dvel

* loop_counter
* i

Type Description

double[3] Earth to Sun vector [km] (from

c_sunlunp)

double[3] Earth to Moon vector [km] (from

c_sunlunp)

double Epoch time in calendar format

double[6] Epoch time in unpacked array format

double Modified Julian Date [days]

double Greenwich Hour Angle [rad]

double A.I - UTI time difference [sec]

long Number of secular terms of nutation

to compute (I- 39, nominally i)

long Number of nonsecular terms of

nutation to compute (1-106,

nominally 50)

double Unused return value (from c_unvec3)

long Return code from RSL routines

double Variable for #defined MU_E

double Variable for #defined THREEB

double Elapsed seconds between epoch time

and requested time [sec]

double Array of dummy position vectors used

by ephemris read routine

double Array of dummy velocity vectors used

by ephemris read routine

int Loop counter

int Loop counter

70 SEI.-94-003

C Code Examples

int Loop counter

double int

double int

double int

long int

long int

long int

long int

long int

int int

char

sun[3], moon[3], caldate, starray[6], mid, gha,

aldiff, fdumm;

m, t;

eptime;

numselc, numterm;

ierr = -I00;

two = 2;

four = 4;

zero = 0;

i,j;

*mag_path = "/public/libraries/rsl/hpux/emag1990.dat';

static int loop_counter = 0;

static double int dpos[3] [100], dvel[3][100];

/* Initialize local parameters for RSL routines */

aldiff = 0.0;

numselc = 1 ;

numterm = 50 ;

if (debug_level[RF] > TRACE)

fprintf(debug_file_handle,'ENTER GetReference\n');

if (debug_level[RF] > INPUT)

{
fprintf(debug_file_handle,'ktINPUTkn');

switch (tel_type)

{
case i:

fprintf(debug_file_handle,

"\tktreference type (ref_type = I) S/C position vector\n');

break;

case 2:

fprintf(debug_file_handle,

"\tktreference type (ref_type = 2) S/C velocity vector\n');

break;

case 3:

fprintf(debug_file_handle,

"\t\treference type (ref_type = 3) S/C to Sun unit vector\n');

break;

case 4:

fprintf(debug_file_handle,

"\t\treference type (ref_type = 4) Earth mag field vector\n');

break;

case 5:

fprintf(debug_file_handle,

"\t\treference type (ref_type = 5) Earth mag field unit vector\n');

break;

SEL-94-003 71

C Code Examples

case 6:

fprintf(debug_file_handle,

"\t\treference type (ref_type = 6) Orbit normal unit vector\n');

break;

case 7:

fprintf(debug_file_handle,

"\t\treference type (ref_type = 7) S/C to Moon unit vector\n');

break;

case 8:

fprintf(debug file_handle,

"\tktreference type (ref_type = 8) S/C to Earth unit vector\n");

break;

)

fprintf(debug_file_handle,

• \t\trequest time [sec] (t_request) = %if\n',t_request);

fprintf(debug_file_handle,

"\t\twait time [sec] (t_wait) = %if\n',t_wait);

/* Begin Case of reference type */

switch (ref type)

(

/* Perform case for either s/c position or velocity vector request

* using the RSL routine c_calpvs */

case i:

case 2:

if (debug_level[RF] > INPUT)

(

fprintf(debug_file_handle,

"\t\tlast pos and vel vector time [sec] (t_rv_ref) = %if\n',

t_rv_ref);

fprintf(debug_file_handle,

"\tktephemeris read method flag (ephem_method) = %c\n',

ephem_method);

if ((t_request - trv ref) > t_wait)

(

eptime = t_request - orbital_t_epoch;

if (debug_level[RF] > INTERMEDIATE)

{
fprintf(debug_file_handle,"\tINTERMEDIATEkn');

fprintf(debug_file_handle,

"\tktRequest time [secs from reference]

(eptime) = %if\n*,eptime);

if (ephem_method == 'F °)

(

if (loop_counter == 0)

72 SEL-94-003

CCodeExamples

}
else

(

for (i=0; i<100; i++)

for (j=0; j<3; j++)

(
dpos[j] [i] = 0.0;

dvel[j] [i] = 0.0;

}

loop_counter++;

c_ephemrd(ephem_file_lu, four, zero,eptime,

dpos,dvel, s_c_pos,s_c_vel,&ierr);

if (ierr)

if (debug_level[RF] > TRACE)

fprintf(debug_file_handle,

"**** Error code from c_ephemrd = %Id\n',ierr);

m = MU_E;

t = THREEB;

c_calpvs(eptime,m, keplerian, t,ttol,maxit, s_c_pos,s c vel,&ierr);

if (ierr)

if (debug_level[RF] > TRACE)

fprintf(debug_file_handle,

"**** Error code from c_calpvs = %id\n",ierr);

if (debug_level[RF] > INTERMEDIATE)

{
fprintf(debug_file_handle,

"\t\tEarth gravitational constant [km^3/secA2]

(MU_E) = %Ifkn',MU_E);

fprintf(debug_file_handle,

"\tktGrav. constant [Km^2]

(THREEB) = %Ifkn',THREEB);

fprintf(debug_file_handle,

"\tkttolerance of true anomaly [tad]

(ttol) = %ifkn',ttol);

fprintf(debug_file_handle,

"\tktmax iters of true anomaly (maxit) = %dkn',maxit);

fprintf(debug_file_handle,

"\tkttime of request [sec from epoch]

(eptime) = %ifkn',eptime);

fprintf(debug_file_handle,

"\tktsemi major axis [km]

(keplerian[l]) = %Ifkn',keplerian[0]);

fprintf(debug_file_handle,

"\tkteccentricity (keplerian[2]) = %ifkn',keplerian[l]);

fprintf(debug_file_handle,

SEL-94-003 73

CCodeExamples

"\t\tinclination [rad] (keplerian[3]) =

%ifkn',keplerian[2]);

fprintf(debug_file_handle,

"\tktra of asc node [rad] (keplerian[4]) =

%if\n',keplerian[3]);

fprintf(debug file_handle,

"\t\targ of perigee [rad] (keplerian[5]) =

%ifkn',keplerian[4]);

fprintf(debug_file_handle,

"\tktmean anomaly [rad] (keplerian[6]) =

%if\n',keplerian[5]);

t_rv_ref = t_request;

if (debug_level[RF] > INTERMEDIATEI

{
fprintf(debug_file_handle,

"\t\ts/c position vector [km] (s_c_pos) = %If,%if,%if\n',

s_c_pos[0],s_c_pos[l],s_c_pos[2]);

fprintf(debug_file_handle,

"\t\ts/c velocity vector [km] (s_c_vel) = %If,%if,%if\n',

s_c_vel[0],s_c_vel[l],s_c_vel[2]);

}
}

if (ref_type == i)

for (i=0 ; i<3 ; i++)

ref_vector[i] = s_c_pos[i];

else

for (i=0 ; i<3 ; i++)

ref_vector[i] = s_c_vel[i];

break;

/* Perform case for s/c to Sun unit vector request using the RSL

* routine c_sunlunp */

case 3:

if (debug_level[RF] > INPUT)

fprintf(debug_file_handle,

"\tktlast sun vector time [sec] (t_s_ref) = %If\n',t_s_ref);

if ((t_request - t_s_ref) > t_wait)

{
caldate = SecsToCalendar(t_request);

c_packst (caldate, starray);

c_calmjd (starray,&mjd);

c_sunlunp(mjd, t_request,sun,moon);

GetSun (sun,s_pos);

t_s_ref = t request;

74 SEL-94-003

C Code Examples

if (debug_level[RF] > INTERMEDIATE)

{
fprintf(debug_file_handle,'\tINTERMEDIATE\n");

fprintf(debug_file_handle,

"\t\tModified Julian Date [days] (mjd) = %if\n", mjd);

fprintf(debug_file_handle,

"\t\ttime of request [sec] (use t_request see above) \n");

)

for (i=0 ; i<3 ; i++)

ref_vector[i] = s_pos[i];

break;

/* Perform case for Earth magnetic field vector or Earth magnetic

* field unit vector using RSL routines c_emagfld and c_unvec3 */

case 4:

case 5:

if (debug_level[RF] > INPUT)

fprintf(debug_file_handle,

"\tktlast Earth mag field vector time [sec] (t_b_ref) = %Ifkn',

t b ref);

if ((t_request - t_b_ref) > t_wait)

{

caldate = SecsToCalendar(t_request);

c_packst (caldate,starray);

c_calmjd (starray,&mjd);

c_jgrenha(mjd, aldiff,numselc,numterm,&gha,&ierr);

if (ierr)

if (debug_level[RF] > TRACE)

fprintf(debug_file_handle,

"**** Error code from c_jgrenha = %idkn',ierr);

c_nmlist(l,&two,mag_path,&ierr);

if (ierr)

if (debug_level[RF] > TRACE)

fprintf(debug_file_handle,

"**** Error code from c_nmlist = %id\n",ierr);

c_emagfl2(two,mjd, t_request,gha, s_c_pos,m_order,mag_field,&ierr);

if (ierr)

if (debug_level[RF] > TRACE)

fprintf(debug_file_handle,

"**** Error code from c_emagfl2 = %idkn',ierr);

c_unvec3 (mag_field,mag_field_unit,&fdumm);

t_b_ref = t_request;

SEL-94-003 75

CCodeExamples

if (debug_level[RF] > INTERMEDIATE)

(
fprintf(debug_file_handle,'\tINTERMEDIATE\n');

fprintf(debug_file_handle,

"\tktModified Julian Date [days] (mjd) = %ifkn', mjd);

fprintf(debug_file_handle,

"\t\ttime difference [sec] (aldiff) = %if\n', aldiff);

fprintf(debug_file_handle,

"\tktnutation number (numselc) = %dkn", numselc);

fprintf(debug_file_handle,

"\tktnutation number (numterm) = %d\n', numterm);

fprintf(debug_file_handle,

"\t\tGreenwich Hour Angle [rad] (gha) = %if\n', gha);

fprintf(debug_file_handle,

"\tktorder of magnetic field (m_order) = %dkn', m_order);

fprintf(debug_file_handle,

"\tkts/c position vector [km] (s_c_pos) = %if,%if,%ifkn',

s_c_pos[0],s_c_pos[l],s_c_pos[2]);

fprintf(debug_file_handle,

"\tkttime of request [sec] (use t_request see above) \n');

if (ref_type == 4)

for (i=0 ; i<3 ; i++)

ref_vector[i] = mag_field[i];

else

for (i=0 ; i<3 ; i++)

ref_vector[i] = mag_field_unit[i];

break;

/* Perform case for orbit normal unit vector request */

case 6:

/* Debug : Intermediate */

if (debug_level[RF] > INPUT)

fprintf(debug_file_handle,

"\tktlast normal unit vector time [sec] (t_o_ref) = %ifkn',

t_o_ref);

if ((t_request - t_o_ref) > t_wait)

{
GetOrbitNormal(orbit_normal);

t_o_ref = t_request;

)

for (i=0 ; i<3 ; i++)

ref_vector[i] = orbit_normal[i];

break;

76 S£L-94-003

C Code Examples

/* Perform case for s/c to Moon unit vector request using the RSL

* routine c_sunlunp */

case 7:

if (debug_level[RF] > INPUT)

fprintf(debug_file_handle,

"\t\tlast moon vector time [sec] (t__m_ref) = %if\n',t m ref);

if ((t_request - t_m_ref) > t_wait)

(
caldate = SecsToCalendar(t_request);

c_packst (caldate,starray);

c_calmjd (starray,&mjd);

c sunlunp(mjd, t_request,sun,moon);

GetMoon (moon,m_pos);

t_m_ref = t_request;

if (debug_level[RF] > INTERMEDIATE)

{
fprintf(debug_file_handle,'\tINTERMEDIATEkn');

fprintf(debug_file_handle,

"\t\tModified Julian Date [days] (mjd) = %ifkn', mjd);

fprintf(debug_file_handle,

"\tkttime of request [sec] (use t_request see above) \n");

for (i=0 ; i<3 ; i++)

ref_vector[i] = m_pos[i];

break;

/* Perform case for s/c to Earth unit vector request */

case 8:

if (debug_level[RF] > INPUT)

fprintf(debug_file_handle,

"\t\tlast Earth vector time [sec] (t_e_ref) = %if\n",t_e_ref);

if ((t_request - t_e_ref) > t_wait)

{
GetEarth(e_pos);

t_e_ref = t_request;

for (i=0 ; i<3 ; i++)

ref_vector[i] = e_pos[i];

break;

SEL-94-003 77

C Code Examples

} /* end switch */

if (debug_level[RF] > OUTPUT)

(
fprintf(debug_file_handle,"\tOUTPUT\n");

fprintf(debug_file_handle,

"\t\trequested reference vector (ref_vector)

ref_vector[0],ref_vector[l],ref_vector[2]);

= %if,%if,%ifkn',

if (debug_level[RF] > TRACE)

fprintf(debug_file_handle,"EXIT GetReference\n\n');

return;

/* end */

78 SEL-94-003

CCodeExamples

9.3 Include File: HD_reference.h

* GLOBAL VARIABLES:

* Variables

* e_pos

* ephem_file_lu

* ephem_file_name

* ephem__method

* keplerian

*

*

*

*

*

*

* m_order

* m_pos

* mag_field

* mag_field_unit

FILE NAME: HD_reference.h

PURPOSE: Defines all reference data variables.

Type

double[3]

long

char[30]

char

double[6]

long

double[3]

double[3]

double[3]

Description

S/C to Earth unit vector

FORTRAN logical unit number

for the ephemeris file

Name of the ephemeris file

Method for computing

ephemeris information:

F = Use ephemeris file

A = Compute analytically

using Keplerian

elements

Keplerian orbital elements

at the epoch time

(orbital_t_epoch):

[i] Semimajor axis [km]

[2] Eccentricity

[3] Inclination [rad]

[4] Right ascension of

the ascending node

[rad]

[5] Argument of perigee

[rad]

[6] Mean anomaly [tad]

Order of magnetic field

S/C to Moon unit vector

Earth magnetic field vector

[mG]

Earth magnetic field unit

vector

SEL-94-003 79

C Code Examples

* maxit

* MU_E

* NUMPTS

* orbit_norraal

* orbital_t_epoch

* s_c_pos

* s_c._ve 1

* S_pOS

* t b ref

* t e ref

*

* t_m_re f

* t_o_ref

* t_rv_re f

* t_s_ref

* THREEB

*

* ttol

long

double

int

double[3]

double

double[3]

double[3]

double[3]

double

double

double

double

double

double

double

double

Maximum number of

iterations to converge

the true anomaly

Earth gravitational

constant [km^3/sec^2]

Number of points used by

the EPHEMRD interpolator

Orbit normal unit vector

Base epoch time of the

orbital elements [sec]

S/C position vector [km]

S/C velocity vector

[kmlsec]

S/C to Sun unit vector

Time of last calculated

Earth magnetic field

vector [sec]

Time of last calculated s/c

to Earth unit vector

[sec]

Time of last calculated s/c

to Moon unit vector [sec]

Time of last calculated

orbit normal unit vector

[sec]

Time of last calculated s/c

position and velocity

vectors[sec]

Time of last calculated s/c

to Sun unit vector [sec]

Gravitational constant of

perturbations [Km^2]

Tolerance in the

calculations of the true

anomaly [rad]

80 SEL-94-003

CCodeExamples

*k

¢r

'/r

¢r

¢r

'A"

¢r

"A"

DEVELOPMENT HISTORY:

Date Author Change

ID

Release

09-23-93 J. Programmer 1

10-07-93 J. Programmer 1

12-02-93 J. Programmer 1

* 12-17-93 J. Programmer 2

04-06-94 J. Programmer 27 3

05-10-94 J. Programmer 3

Description of Change

Prolog and PDL
Controlled

Integrated new RSL

routines

Added maxit and ttol;

added MU_E and THREEB

as #defines

Corrected the THREEB

value

Added ephemeris read

capability

#define MU_E 398600.8

#define THREEB 66042.0

#define NUMPTS 4

extern long

extern double

extern char

extern char

extern double

extern long

extern double

extern double

extern double

extern long

extern double

extern double

extern double

extern double

extern double

extern double

extern double

extern double

extern double

extern double

extern double

extern double

ephem_file_lu;

e_pos[3];

ephem_file_name[30];

ephem method;

keplerian[6];

m_order;

m_pos[3];

mag_field[3];

mag_field_unit[3];

maxit;

orbit_normal[3];

orbital_t_epoch;

s_c_pos[3];

s c vel[3];

s_pos[3];

t_b_ref;

t_e_ref;

t m ref;

t_o_ref;

t_rv_ref;

t_s_ref;

ttol;

SEL-94-003 81

BIBLIOGRAPHY

Atterbury, M., ESA Style Guide for 'C' Coding, Expert

Solutions Australia Pty. Ltd., Melbourne, Australia (1991)

Computer Sciences Corporation, SEAS System Development

Methodology (Release 2) (1989)

Indian Hill C Style and Coding Standards, Bell Telephone

Laboratories, Technical Memorandum 78-5221 (1978)

Kernighan, B., and Ritchie, D., The C Programming Language,

Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1978)

Minow, M., A C Style Sheet, Digital Equipment Corporation,

Maynard, Massachusetts

Oualline, S., C Elements of Style, M&T Publishing, Inc., San

Mateo, California (1992)

Wood R., and Edwards, E., Programmer's Handbook for Flight

Dynamics Software Development, SEL-86-001 (1986)

SEL-94-003 83

IHI)EX

A

Abnormal termination
conditions

in file prolog 19
Abort statement 25

Algorithm 20
in file prolog 19
PDL 19

Allocation functions 42
ANSI C 3, 37, 57, 58

Array boundaries 38

Assignment
operator 43
statement 44

Assumptions
in file prolog 19

Author
in file prolog 19

Automatic variable 40

initializing 40

B

Bind operands 43
Blank lines 5

overuse 5

Block comments 7

Boxed comments 7
Braces 48

Braces-Stand-Alone
method 48

Breadth-first approach
ordering functions
28

Break statement 55

C

C binding 11
Call statement 21

Capitalization 11
Case statement 23

Cast operator 41, 43

Change id
in file prolog 19

Comma

operator 43, 44

spacing 5
Comments 6

and PDL 6
block 7
boxed 7

file prolog 6
function prolog 6
inline 7, 8
README file 6
short 7

Compound
statements 48

Conditional
expressions 45
nested 48
operator 43

const
modifier 11, 38
vs. define 39

Constant
formatting 37
long 39
macros 28, 38
names 11
numerical 38

Constraints

infileprolog 19

D

Data declarations

external 28

Data hiding 14

Data sections

encapsulation 3

Data structures

encapsulation 3

Date

infileprolog 19

Declaration

extem 3, 28, 33
external variables

33

function

parameters 32
variable 39

define

vs.const 39

Definitions

external 28

non-static28

staticextemal 28

variable 39

Descriptionof change

infileprolog 19

Development history

infileprolog 19

Directive

include 27

do forstatement 24

do untilstatement 25

SEL-94-003 85

Index

do while statement
24, 55

E

else if statement 51

Encapsulation 3, 14
data sections 3
data structures 3
files 3
function sections 3

enum 11, 28

Enumeration types 1I,
38

names 11

Error handling 55

Error messages
in file prolog 19

Exception handling 25,
55

Expressions
conditional 45

extem 3, 28, 33

External data
declarations 28

External references
in file prolog 19

External variables 3, 28
declarations 33
in file prolog 19
non-static 28
static 28
with functions 29

F

File
encapsulation 3
header 14
Makefile 15
module 15
name

in file prolog 18
organization 17
program 13
README 6, 14
references

in file prolog 19

File organization
schema 17

File prolog 6, 18
abnormal
termination
conditions 19

algorithm 19
assumptions 19
author 19

change id 19
constraints 19
date 19

description of
change 19

development
history 19

error messages 19
external references

19
external variables

19
file name 18
file references 19
in release 19
notes 19
PDL 19

purpose 18
requirements
references 19

restrictions 19
warning messages

19

Filename suffixes 16

Floating point
numbers 39

for statement 54

Function 31
allocation 42

alphabetical listing
of 28

macros 28
name 11, 43

function prolog 31
ordering

breadth-first
approach 28

organization
schema 31

organization
schema 31

parameters
declaration 32

prolog 6, 31
function name 31
parameters 31
return value 31

separating 28
sequence 28
with external

variables 29

G

Global variables 28

goto statement 55

H

Hard-coding
array boundaries 38
numerical constants
38

Header files 3, 14

prolog 20
time.h 14

Hexadecimal numbers
39

Hidden variable 10, 33

I

if else statement 50

if statement 50

if then else statement
22

if then statement 22

Include directive 27

Indentation 6
four spaces 6

Information hiding 3
example 4

Inline comments 7, 8

• Internal variables 33
declaration 33

naming I0
Iteration control
statements 24, 53

do for 24

86 SEL-94-003

Index

do until 25
do while 24, 55
for 54
while 54

L

Labels 55
Libraries

math.h 15
standard 14
stdio.h 14

Long constants 39
Loops 48

indices 33
nested 26

M

Macros
constant 28
function 28

main() 28

Maintainability 3
Makefile 15

example 60
math.h 15

Module file] 5

N

Names 3, 8
and hidden
variables 10

C binding 1]
constant 8, 11

enumeration types
11

file8

function8,1I,31,43

long variable 6
standard 9
standard filename
suffixes 16

standard suffixes 10
type] 1
variable 4, 10
variables 8

Nested

conditionals 48
if statements 51

loops 26
Non-static external
definitions 28

Notes
in file prolog 19

Null pointer 42
Numbers 39

floating point 39
hexadecimal 39

Numerical constants
38

O

Operators
assignment 43
binding operands
43
cast 41, 43
comma 43, 44

conditional43

formatting 43

parentheses 43

precedence 44

primary 43
semicolons 43
side-effects44

unary 43

Organization
file17

functions31

program 13
statements 47

P

Paragraphing 5,33

Parameters

functionprolog 31

Parentheses

operator 43

precedence 44

PDL 20

comments 6

exception handling
25

general guidelines
20

infileprolog 19
iterationcontrol

statements 24

do for24

do until25

do while 24

selectioncontrol

statements 21

case 23

ifthen 22

ifthen else22

sequence
statements 21
call 21
return 21

severe error
handling 25
abort 25
undo 26

types of statements
21

Performance

guidelines 58
real-time systems
58

Pointer conversions 42
allocation functions
42

null 42
size 42

Pointer types 42

Portability
guidelines 57
standard library 57
two's complement
57

word size 57

Precedence

operators 44
rules 46

Primary operator 43

Program
files 13
organization 13

Prolog
file 18
function 31

SEL-94_03 87

Index

header file 20

Purpose
in file prolog 18

Q

Qualifiers 40

R

Readability 3
README file 6, 14

Real-time systems
portability 58

Release

in file prolog 19

Requirements
references

in file prolog 19
Restrictions

in file prolog 19
Return

sequence
statement 21

statement 34
multiple returns 35
single return 35

value
function prolog 31

S

Schema
file organization 17
function
organization 31

program
organization 13

Scope 3
variables

example 4
Selection control
statements 50

case 23
else if 51
if 50
if else 50
if then 22
if then else 22

nested if 51
PDL 21
switch 53

Semicolons 43

Sequence
of functions 28

Sequence statements
21, 47

call 21
return 21

Severe error handling
statement 25, 55

abort 25
break 55
goto 55
undo 26

Short comments 7

Side-effect 44
order 48

Size 39, 42
integer 38, 57
pointers 57
portability 57
word 57

sizeof 42, 48, 49

Spaces 4, 5
and operators 43
comma spacing 5
PDL indentation 20 "
reserved words 49
white space 3

Standard libraries 14
portability 57

Statement 47

assignment 44
break 26, 55
call 21
case 23

compound 48
do for 24
do until 25
do while 24, 55
else if 51
exception handling
25

for 54

goto 26, 55
if 50
if else 50

if then 22
if then else 22
iteration control 24,
53

nested if 51
return 21, 34
selection control 21,
5O

sequence 21, 47
severe error
handling 25

side-effect order 48
switch 53
while 54

Statement
paragraphing 33

Static external
definitions 28

stdio.h 14, 15, 17, 27

Structured code 26, 55

Structures 40

Style I
Suffixes

filename 16

Switch statement 53

T

Termination conditions

in file prolog 19
time.h 14

Two's complement
arithmetic 57

Type
conversions 41
enumeration 11, 38
names 11
pointer 42

Typedef 11, 28

U

Unary operator 43
Undo statement 26

88 SEL-94-003

Index

V

Variable

automatic 40

declarations39

definitions39

external 3,28

formatting 37

global 28
hidden 10,33

internal33

names 10

scope 4

Visibility3

W

Warning messages

infileprolog 19

While statement 54

White space 4
blank lines5

indentation 6

spaces 5

Word size57

SEL-94-003 89

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are organized into

two groups. The first group is composed of documents issued by the Software Engineering

Laboratory (SEL) during its research and development activities. The second group includes

materials that were published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engineering Workshop, August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop, September

1977

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop, September

1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study, P. A. Scheffer

and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp, December

1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User's Guide (Revision 3),

W. J. Decker, W. A. Taylor, et al., July 1986

SEL-79-002, The Software Engineering Laboratory: Relationship Equations, K. Freburger and

V. R. Basili, May 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language (PDL) in

the Goddard Space Flight Center (GSFC) Code 580 Software Design Environment, C. E.

Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop, November

1979

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R) System

Evaluation, W. J. Decker and C. E. Goorevich, May 1980

SEL-80-005, A Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshop, November
1980

SEL-80-007, An Appraisal of Selected Cost�Resource Estimation Models for Software Systems,

J. F. Cook and F. E. McGarry, December 1980

STDBIB
8/24/1994

BI-1

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering, V. R.

Basili, 1980

SEL-81-011, Evaluating Software Development by Analysis of Change Data, D. M. Weiss,

November 1981

SEL-81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of Medium

Scale Software Systems, G. O. Picasso, December 1981

SEL-81-013, Proceedings of the Sixth Annual Software Engineering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering Data m the Software Engineering

Laboratory (SEL), A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGarry, et al., August

1982

SEL-81-104, The Software Engineering Laboratory, D. N. Card, F. E. McGarry, G. Page, et al.,

February 1982

SEL-81-110, Evaluation of an Independent Verification and Validation (1V& V) Methodology for

Flight Dynamics, G. Page, F. E. McGarry, and D. N. Card, June 1985

SEL-81-305, Recommended Approach to Software Development, L. Landis, S. Waligora, F. E.

McGarry, et al., June 1992

SEL-81-305SP1, Ada Developers' Supplement to the Recommended Approach, R. Kester and

L. Landis, November 1993

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page, D. N.

Card, and F. E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop, December

1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From the

Software Engineering Laboratory, V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Description

(Revision 1), W. A. Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst, M. G. Rohleder,

and F. E. McGarry, October 1983

SEL-82-1206, Annotated Bibliography of Software Engineering Laboratory Literature,

L. Morusiewicz and J. Valett, November 1993

SEL-83-001, An Approach to Software Cost Estimation, F. E. McGarry, G. Page, D. N. Card, et

al., February 1984

STDBIB
8/24/1994

BI-2

SEL-83-002,Measures and Metrics for Software Development, D. N. Card, F. E. McGarry,

G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume 11, November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop, November 1983

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revision 1), C. W.

Doerflinger, November 1989

SEL-84-003, Investigation of Specification Measures for the Software Engineering Laboratory

(SEL), W. W. Agresti, V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop, November 1984

SEL-84-101, Manager's Handbook for Software Development (Revision 1), L. Landis, F. E.

McGarry, S. Waligora, et al., November 1990

SEL-85-001, A Comparison of Software Verification Techniques, D. N. Card, R. W. Selby, Jr.,

F. E. McGarry, et al., April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray Observatory

Ada Development Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume 111, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing, CLEANROOM, and Metrics, R. W.

Selby, Jr., and V. R. Basili, May 1985

SEL-85-005, Software Verification and Testing, D. N. Card, E. Edwards, F. McGarry, and

C. Antle, December 1985

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop, December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics Software Development, R. Wood

and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and M. Stark, August

1986

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE) Tutorial,

J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume 1II, November 1986

SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Software Engineering Workshop, December

1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software

Development, S. Perry et al., March 1987

SEL-87-002, Ada® Style Guide (Version 1.1), E. Seidewitz et al., May 1987

STDBIB

$/24/I 994

BI-3

SEL-87-003,Guidelines for Applying the Composite Specification Model (CSM), W. W. Agresti,

June 1987

SEL-87-004, Assessing the Ada® Design Process and lts Implications: A Case Study,

S. Godfrey, C. Brophy, et al., July 1987

SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop, December 1987

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle, L. Esker,

and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Volume V1, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase Analysis,

K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop, November

1988

SEL-88-005, Proceedings of the First NASA Ada User's Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study, S. Godfrey and

C. Brophy, September 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: Implementation/Testing

Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGarry, November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/Goddard,

C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop, November

1989

SEL-89-008,

SEL-89-103,

R. Hendrick,

Proceedings of the Second NASA Ada Users' Symposium, November 1989

Software Management Environment (SME) Concepts and Architecture (Revision 1),

D. Kistler, and J. Valett, September 1992

SEL-89-301, Software Engineering Laborary (SEL) Database Organization and User's Guide

(Revision 3), L. Morusiewicz, December 1993

SEL-90-001, Database Access Manager for the Software Engineering Laboratory (DAMSEL)

User's Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory: Project

Description andEarly Analysis, S. Green et al., March 1990

SEL-90-003, A Study of the Portability of an Ada System in the Software Engineering Laboratory

(SEL), L. O. Jun and S. R. Valett, June 1990

STDBIB
8/24/1994

BI-4

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experiment

Summary, T. McDermott and M. Stark, September 1990

SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990

SEL-90-006, Proceedings of the Fifteenth Annual Software Engineering Workshop, November

1990

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Management

Rules, W. Decker, R. Hendrick, and J. Valett, February 1991

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report, E. W.

Booth and M. E. Stark, July 1991

SEL-91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model, S. Green,

November 1991

SEL-91-005, Collected Software Engineering Papers: Volume 1X, November 1991

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop, December

1991

SEL-91-102, Software Engineering Laboratory (SEL) Data and Information Policy (Revision 1),

F. McGarry, August 1991

SEL-92-001, Software Management Environment (SME) Installation Guide, D. Kisfler and

K. Jeletic, January 1992

SEL-92-002, Data Collection Procedures for the Software Engineering Laboratory (SEL)

Database, G. Heller, J. Valett, and M. Wild, March 1992

SEL-92-003, Collected Software Engineering Papers: Volume X, November 1992

SEL-92-004, Proceedings of the Seventeenth Annual Software Engineering Workshop, December

1992

SEL-93-001, Collected Software Engineering Papers: Volume),7, November 1993

SEL-93-002, Cost and Schedule Estimation Study Report, S. Condon, M. Regardie, M. Stark,

et al., November 1993

SEL-93-003, Proceedings of the Eighteenth Annual Software Engineering Workshop, December
1993

SEL-94-001, Software Management Environment (SME) Components and Algorithms,

R. Hendrick, D. Kistler, and J. Valett, February 1994

SEL-94-002, Software Measurement Guidebook, M. Bassman, F. McGarry, R. Pajerski,

July 1994

SEL-94-003, C Style Guide, J. Doland and J. Valett, August 1994

SI'DBIB
8/3 ! /1994

BI-5

SEL-RELATED LITERATURE

l°Abd-E1-Hafiz, S. K., V. R. Basili, and G. Caldiera, "Towards Automated Support for

Extraction of Reusable Components," Proceedings of the IEEE Conference on Software

Maintenance-1991 (CSM 91), October 1991

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, "Designing With Ada for Satellite

Simulation: A Case Study," Proceedings of the First International Symposium on Ada for the

NASA Space Station, June 1986

2Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Measuring Software Technology," Program

Transformation and Programming Environments. New York: Springer-Verlag, 1984

1Bailey, J. W., and V. R. Basili, "A Meta-Model for Software Development Resource

Expenditures," Proceedings of the Fifth International Conference on Software Engineering. New

York: IEEE Computer Society Press, 1981

8Bailey, J. W., and V. R. Basili, "Software Reclamation: Improving Post-Development

Reusability," Proceedings of the Eighth Annual National Conference on Ada Technology, March

1990

10Bailey, J. W., and V. R. Basili, "The Software-Cycle Model for Re-Engineering and Reuse,"

Proceedings of the ACM Tri-Ada 91 Conference, October 1991

1Basili, V. R., "Models and Metrics for Software Management and Engineering," ASME

Advances in Computer Technology, January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering. New

York: IEEE Computer Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software Methodology," Proceedings of the First Pan-

Pacific Computer Conference, September 1985

7Basili, V. R., Maintenance = Reuse-Oriented Software Development, University of Maryland,

Technical Report TR-2244, May 1989

7Basili, V. R., Software Development: A Paradigm for the Future, University of Maryland,

Technical Report TR-2263, June 1989

8Basili, V. R., "Viewing Maintenance of Reuse-Oriented Software Development," IEEE Software,

January 1990

1Basili, V. R., and J. Beane, "Can the Parr Curve Help With Manpower Distribution and

Resource Estimation Problems?," Journal of Systems and Software, February 1981, vol. 2, no. 1

9Basili, V. R., G. Caldiera, and G. Cantone, "A Reference Architecture for the Component

F actory,"ACM Transactions on Software Engineering andMethodology, January 1992

SrDBIB

8/24/1994

BI-6

l°Basili, V., G. Caldiera, F. McGarry, et al., "The Software Engineering Laboratory--An

Operational Software Experience Factory," Proceedings of the Fourteenth International

Conference on Software Engineering (ICSE 92), May 1992

1Basili, V. R., and K. Freburger, "Programming Measurement and Estimation in the Software

Engineering Laboratory," Journal of Systems and Soflware, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relationships Between Effort and Other

Variables in the SEL," Proceedings of the International Computer Software and Applications

Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction and Reliability Assessment in the SEL

Environment, University of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and Complexity: An Empirical

Investigation," Communications of the ACM, January 1984, vol. 27, no. 1

1Basili, V. R., and T. Phillips, "Evaluating and Comparing Software Metrics in the Software

Engineering Laboratory," Proceedings of the ACM SIGMETRICS Symposium�Workshop: Quality

Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Prototype Expert System for

Software Engineering Management," Proceedings of the IEEE/MITRE Expert Systems in

Government Symposium, October 1985

Basili, V. R., and J. Ramsey, Structural Coverage of Functional Testing, University of Maryland,

Technical Report TR-1442, September 1984

Basili, V. R., and R. Reiter, "Evaluating Automatable Measures for Software Development,"

Proceedings of the Workshop on Quantitative Software Models for Reliability, Complexity, and

Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. R., and H. D. Rombach, "Tailoring the Software Process to Project Goals and

Environments," Proceedings of the 9th International Conference on Software Engineering, March

1987

5Basili, V. R., and H. D. Rombach, "TAME: Tailoring an Ada Measurement Environment,"

Proceedings of the Joint Ada Conference, March 1987

5Basili, V. R., and H. D. Rombach, "TAME: Integrating Measurement Into Software

Environments," University of Maryland, Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project: Towards Improvement-Oriented

Software Environments," IEEE Transactions on Software Engineering, June 1988

7Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: A Reuse-

Enabling Software Evolution Environment, University of Maryland, Technical Report TR-2158,

December 1988

b-'rDBIB
8/24/! 994

BI-7

8Basili,V. R., andH. D. Rombach,Towards A Comprehensive Framework for Reuse: Model-

Based Reuse Characterization Schemes, University of Maryland, Technical Report TR-2446,

April 1990

9Basili, V. R., and H. D. Rombach, "Support for Comprehensive Reuse," Software Engineering

Journal, September 1991

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use of an Environment's Characteristic

Software Metric Set," Proceedings of the Eighth International Conference on Software

Engineering. New York: IEEE Computer Society Press, 1985

Basili, V. R., and R. W. Selby, "Comparing the Effectiveness of Software Testing Strategies,"

IEEE Transactions on Software Engineering, December 1987

3Basili, V. R., and R. W. Selby, Jr., "Four Applications of a Software Data Collection and

Analysis Methodology," Proceedings of the NA TO Advanced Study Institute, August 1985

5Basili, V. R., and R. Selby, "Comparing the Effectiveness of Software Testing Strategies," 1EEE

Transactions on Software Engineering, December 1987

9Basili, V. R., and R. W. Selby, "Paradigms for Experimentation and Empirical Studies in

Software Engineering," Reliability Engineering and System Safety, January 1991

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Experimentation in Software Engineering,"

1EEE Transactions on Software Engineering, July 1986

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Analysis and Data Validation Across

FORTRAN Projects," IEEE Transactions on Software Engineering, November 1983

2Basili, V. R., and D. M. Weiss, A Methodology for Collecting Valid Software Engineering Data,

University of Maryland, Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collecting Valid Software Engineering

Data," 1EEE Transactions on Software Engineering, November 1984

1Basili, V. R., and M. V. Zelkowitz, "The Software Engineering Laboratory: Objectives,"

Proceedings of the Fifteenth Annual Conference on Computer Personnel Research, August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software Measurement Experiment,"

Proceedings of the Software Life Cycle Management Workshop, September 1977

1Basili, V. R., and M. V. Zelkowitz, "Operation of the Software Engineering Laboratory,"

Proceedings of the Second Software Life Cycle Management Workshop, August 1978

1Basili, V. R., and M. V. Zelkowitz, "Measuring Software Development Characteristics in the

Local Environment," Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale Software Development,"

Proceedings of the Third International Conference on Software Engineering. New York: IEEE

Computer Society Press, 1978

8TDBIB
812411994

BI-8

Bassman, M. J., F. McGarry, and R. Pajerski, Software Measurement Guidebook, NASA-GB-

001-94, Software Engineering Program, July 1994

9Booth, E. W., and M. E. Stark, "Designing Configurable Software: COMPASS Implementation

Concepts," Proceedings of Tri-Ada 1991, October 1991

10Booth, E. W., and M. E. Stark, "Software Engineering Laboratory Ada Performance

StudymResults and Implications," Proceedings of the Fourth Annual NASA Ada User's

Symposium, April 1992

l°Briand, L. C., and V. R. Basili, "A Classification Procedure for the Effective Management of

Changes During the Maintenance Process," Proceedings of the 1992 IEEE Conference on

Software Maintenance (CSM 92), November 1992

1°Briand, L. C., V. R. Basili, and C. J. Hetmanski, "Providing an Empirical Basis for Optimizing

the Verification and Testing Phases of Software Development," Proceedings of the ThirdlEEE

International Symposium on Software Reliability Engineering (1SSRE 92), October 1992

11Briand ' L. C., V. R. Basili, and C. J. Hetmanski, Developing Interpretable Models with

Optimized Set Reduction for Identifying High Risk Software Components, TR-3048, University of

Maryland, Technical Report, March 1993

9Briand, L. C., V. R. Basili, and W. M. Thomas, A Pattern Recognition Approach for Software

Engineering Data Analysis, University of Maryland, Technical Report TR-2672, May 1991

11Briand ' L. C., S. Morasca, and V. R. Basili, "Measuring and Assessing Maintainability at the

End of High Level Design," Proceedings of the 19931EEE Conference on Software Maintenance

(CSM 93), November 1993

11Briand ' L. C., W. M. Thomas, and C. J. Hetmanski, "Modeling and Managing Risk Early in

Software Development," Proceedings of the Fifteenth International Conference on Software

Engineering (ICSE 93), May 1993

5Brophy, C. E., W. W. Agresti, and V. R. Basili, "Lessons Learned in Use of Ada-Oriented

Design Methods," Proceedings of the Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, "Lessons Learned in the

Implementation Phase of a Large Ada Project," Proceedings of the Washington Ada Technical

Conference, March 1988

2Card, D. N., "Early Estimation of Resource Expenditures and Program Size," Computer

Sciences Corporation, Technical Memorandum, June 1982

2Card, D. N., "Comparison of Regression Modeling Techniques for Resource Estimation,"

Computer Sciences Corporation, Technical Memorandum, November 1982

3Card, D. N., "A Software Technology Evaluation Program," Annais do XV111 Congresso

Nacional de lnformatica, October 1985

STDBIB
812411994

BI-9

5Card,D. N., and W. W. Agresti, "Resolving the Software Science Anomaly," Journal of Systems

and Software, 1987

6Card, D. N., and W. W. Agresti, "Measuring Software Design Complexity," Journal of Systems

and Software, June 1988

4Card, D. N., V. E. Church, and W. W. Agresti, "An Empirical Study of Software Design

Practices," 1EEE Transactions on Software Engineering, February 1986

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, "A Software Engineering View of

Flight Dynamics Analysis System," Parts I and II, Computer Sciences Corporation, Technical

Memorandum, February 1984

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteristics of FORTRAN Modules,"

Computer Sciences Corporation, Technical Memorandum, June 1984

5Card, D. N., F. E. McGarry, and G. T. Page, "Evaluating Software Engineering Technologies,"

IEEE Transactions on Software Engineering, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for Software Modularization,"

Proceedings of the Eighth International Conference on Software Engineering. New York: IEEE

Computer Society Press, 1985

1Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software Engineering

Methodologies," Proceedings of the Fifth International Conference on Software Engineering.

New York: IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan, "An Approach for Assessing

Software Prototypes," ACM Software Engineering Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software Development Through Dynamic

Variables," Proceedings of the Seventh International Computer Software and Applications

Conference. New York: IEEE Computer Society Press, 1983

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of Maryland,

Technical Report TR-1895, August 1987 (NOTE: 100 pages long)

6Godfrey, S., and C. Brophy, "Experiences in the Implementation of a Large Ada Project,"

Proceedings of the 1988 Washington Ada Symposium, June 1988

5Jeffery, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical Association of

Software Data, University of Maryland, Technical Report TR-1848, May 1987

6Jeffery, D. R., and V. R. Basili, "Validating the TAME Resource Data Model," Proceedings of

the Tenth International Conference on Software Engineering, April 1988

11Li ' N. R., and M. V. Zelkowitz, "An Information Model for Use in Software Management

Estimation and Prediction," Proceedings of the Second International Conference on Information

Knowledge Management, November 1993

STDBIB

$/24/1994

BI-10

5Mark,L., andH. D. Rombach,A Meta Information Base for Software Engineering, University

of Maryland, Technical Report TR-1765, July 1987

6Mark, L., and H. D. Rombach, "Generating Customized Software Engineering Information

Bases From Software Process and Product Specifications," Proceedings of the 22rid Annual

Hawaii International Conference on System Sciences, January 1989

5McGarry, F. E., and W. W. Agresti, "Measuring Ada for Software Development in the Software

Engineering Laboratory (SEL)," Proceedings of the 21st Annual Hawaii International Conference

on System Sciences, January 1988

7McGarry, F., L. Esker, and K. Quimby, "Evolution of Ada Technology in a Production

Software Environment," Proceedings of the Sixth Washington Ada Symposium (WADAS), June

1989

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the Impact of Computer Resource Quality

on the Software Development Process and Product," Proceedings of the Hawaiian International

Conference on System Sciences, January 1985

3page, G., F. E. McGarry, and D. N. Card, "A Practical Experience With Independent

Verification and Validation," Proceedings of the Eighth International Computer Software and

Applications Conference, November 1984

5Ramsey, C. L., and V. R. Basili, "An Evaluation of Expert Systems for Software Engineering

Management," 1EEE Transactions on Software Engineering, June 1989

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process Using Structural Coverage,"

Proceedings of the Eighth International Conference on Software Engineering. New York: IEEE

Computer Society Press, 1985

5Rombach, H. D., "A Controlled Experiment on the Impact of Software Structure on

Maintainability," IEEE Transactions on Software Engineering, March 1987

8Rombach, H. D., "Design Measurement: Some Lessons Learned," 1EEESoftware, March 1990

9Rombach, H. D., "Software Reuse: A Key to the Maintenance Problem," Butterworth Journal

of Information and Software Technology, January/February 1991

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment of Maintenance: An Industrial

Case Study," Proceedings From the Conference on Software Maintenance, September 1987

6Rombach, H. D., and L. Mark, "Software Process and Product Specifications: A Basis for

Generating Customized SE Information Bases," Proceedings of the 22nd Annual Hawaii

International Conference on System Sciences, January 1989

7Rombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance

Improvement Program: Lessons Learned in the SEL, University of Maryland, Technical Report

TR-2252, May 1989

STDBIB
8/24/1994

BI-11

lORombach,H. D., B. T. Ulery, and J. D. Valett, "Toward Full Life Cycle Control: Adding

Maintenance Measurement to the SEL," Journal of Systems and Software, May 1992

6Seidewitz, E., "Object-Oriented Programming in Smalltalk and Ada," Proceedings of the 1987

Conference on Object-Oriented Programming Systems, Languages, and Applications, October

1987

5Seidewitz, E., "General Object-Oriented Software Development: Background and Experience,"

Proceedings of the 21st Hawaii International Conference on System Sciences, January 1988

6Seidewitz, E., "General Object-Oriented Software Development with Ada: A Life Cycle

Approach," Proceedings of the CASE Technology Conference, April 1988

9Seidewitz, E., "Object-Oriented Programming Through Type Extension in Ada 9X," Ada

Letters, March/April 1991

10Seidewitz, E., "Object-Oriented Programming With Mixins in Ada," Ada Letters, March/April

1992

4Seidewitz, E., and M. Stark, "Towards a General Object-Oriented Software Development

Methodology," Proceedings of the First International Symposium on Ada for the NASA Space

Station, June 1986

9Seidewitz, E., and M. Stark, "An Object-Oriented Approach to Parameterized Software in

Ada," Proceedings of the Eighth Washington Ada Symposium, June 1991

8Stark, M., "On Designing Parametrized Systems Using Ada," Proceedings of the Seventh

Washington Ada Symposium, June 1990

llStark, M., "Impacts of Object-Oriented Technologies: Seven Years of SEL Studies,"

Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and

Applications, September 1993

7Stark, M. E. and E. W. Booth, "Using Ada to Maximize Verbatim Software Reuse,"

Proceedings of TR1-Ada 1989, October 1989

5Stark, M., and E. Seidewitz, "Towards a General Object-Oriented Ada Lifecycle," Proceedings

of the Joint Ada Conference, March 1987

lOStraub, P. A., and M. V. Zelkowitz, "On the Nature of Bias and Defects in the Software

Specification Process," Proceedings of the Sixteenth International Computer Software and

Applications Conference (COMPSAC 92), September 1992

8Straub, P. A., and M. V. Zelkowitz, "PUC: A Functional Specification Language for Ada,"

Proceedings of the Tenth International Conference of the Chilean Computer Science Society, July

1990

7Sunazuka, T., and V. R. Basili, Integrating Automated Support for a Software Management Cycle

lnto the TAME System, University of Maryland, Technical Report TR-2289, July 1989

_BIB

812411994

BI-12

10Tian, J., A. Porter, and M. V. Zelkowitz, "An Improved Classification Tree Analysis of High

Cost Modules Based Upon an Axiomatic Definition of Complexity," Proceedings of the Third

IEEE International Symposium on Software Reliability Engineering (ISSRE 92), October 1992

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL Software Development Data,

Data and Analysis Center for Software, Special Publication, May 1981

l°Valett, J. D., "Automated Support for Experience-Based Software Management," Proceedings

of the Second lrvine Software Symposium (1SS_92), March 1992

5Valett, J. D., and F. E. McGarry, "A Summary of Software Measurement Experiences in the

Software Engineering Laboratory," Proceedings of the 21st Annual Hawaii International

Conference on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, "Evaluating Software Development by Analysis of Changes:

Some Data From the Software Engineering Laboratory," IEEE Transactions on Software

Engineering, February 1985

5Wu, L., V. R. Basili, and K. Reed, "A Structure Coverage Tool for Ada Software Systems,"

Proceedings of the Joint Ada Conference, March 1987

1Zelkowitz, M. V., "Resource Estimation for Medium-Scale Software Projects," Proceedings of

the Twelfth Conference on the Interface of Statistics and Computer Science. New York: IEEE

Computer Society Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Experimental Computer Science

Research," Empirical Foundations for Computer and Information Science (Proceedings),

November 1982

6Zelkowitz, M. V., "The Effectiveness of Software Prototyping: A Case Study," Proceedings of

the 26th Annual Technical Symposium of the Washington, D.C., Chapter of the ACM, June 1987

6Zelkowitz, M. V., "Resource Utilization During Software Development," Journal of Systems

and Software, 1988

8Zelkowitz, M. V., "Evolution Towards Specifications Environment: Experiences With Syntax

Editors," Information and Software Technology, April 1990

STDBIB
812411994

BI-13

NOTES:

1This article also appears m SEL-82-004, Collected Software Engineering Papers:

1982.

2This article also appears m SEL-83-003, Coltected Software Engineering Papers: Volume 1I,

November 1983.

3This article also appears In SEL-85-003, Collected Software Engineering Papers: Volume 111,

November 1985.

4This article also appears m SEL-86-004, Collected Software Engineering Papers: Volume 1V,

November 1986.

5This article also appears m SEL-87-009, Collected Software Engineering Papers: Volume V,

November 1987.

6This article also appears m SEL-88-002, Collected Software Engineering Papers: Volume I/7,

November 1988.

7This article also appears m SEL-89-006, Collected Software Engineering Papers: Volume Vll,

November 1989.

8This article also appears m SEL-90-005, Collected Software Engineering Papers: Volume Vl11,

November 1990.

9This article also appears m SEL-91-005, Collected Software Engineering Papers: Volume 1X,

November 1991.

l°This article also appears in SEL-92-003, Collected Software Engineering Papers: Volume X,

November 1992.

llThis article also appears in SEL-93-001, Collected Software Engineering Papers: Volume XI,

November 1993.

Volume 1, July

$TDBIB

8/24/I 994

BI-14

¢.-.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering

and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of

information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite

1204, Arlin_]ton, VA 22202-4302, and to the Office of Mana_lement and Budset, Paperwork Reduction Proiect (0704-0188), Washin_lton, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
August 1994 Contractor Report

' 4. TITLE AND SUBTITLE

C Style Guide

6. AUTHOR(S)

Software Engineering Laboratory

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Branch

Code 552

Goddard Space Flight Center

Greenbelt, Maryland

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

NASA Aeronautics and Space Administration

Washington, D.C. 20546-0001

5. FUNDING NUMBERS

552

/17_',-,+>:. /,, 7)

8. PERFORMING ORGANIZATION

REPORT NUMBER

SEL-94-003

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

CR-189408

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category: 61

Report is available from the NASA Center for AeroSpace Information,

800 Elkrid_e Landin_ Road, Linthicum Heights, MD 21090; (301) 621-0390.

13. ABSTRACT (Maximum 200 words)

12b. DISTRIBUTION CODE

This document discusses recommended practices and style for programmers using the C language in the Flight

Dynamics Division environment. Guidelines are based on generally recommended software engineering techniques, industry

resources, and local convention. The Guide offers preferred solutions to common C programming issues and illustrates

through examples of C Code.

14. SUBJECT TERMS

C language

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18.SECURITY CLASSIFICATION 19.SECURITY CLASSIFICATION
OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

Unlimited

Standard Form 298 (Rev. 2-89)

